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Minimum Circuit Size Problem (MCSP)

. Truthtable T € {0,1}%" of a

function f:{0,1}* — {0,1}

* Size parameters € N

Example:
s=25

~ = O O

-~ O = O

0

1
1
0

Is there a circuit of size < s
that computes f?

Output: “YES” X1 ?9 2
V

N
N N\
X/
N



Brief History of MCSP

1950s  Recognized as an important problem
in the Soviet Union [Trakhtenbrot’s survey]

1970s  Levin delayed publishing his work because
he wanted to say something about MCSP.

1979 Masek proved NP-completeness of DNF-MCSP.

2000 Kabanets and Cai revived interest,
based on natural proofs. [Razborov & Rudich (1997)]

Since then many papers and results appeared;
however, the complexity of MCSP remains elusive.



Current Knowledge about MCSP

» Upper bound: MCSP € NP

» Lower bound: Ipseudorandom function generators = MCSP &€ P

» Big Open Question: Is MCSP NP-hard?

» No consensus about the exact complexity of MCSP

v'No strong evidence against NP-completeness
* Weak evidence: [Hirahara-Santhanam (CCC’17)] [Allender-Hirahara 17]...

v'No strong evidence for NP-completeness
* Some new evidence: [Impagliazzo-Kabanets-Volkvovich (CCC’18)] & This work



Kabanets-Cai Obstacle: Why so difficult?

» Suppose that we want to construct a reduction
from SAT to MCSP.
@ € SAT - (f,s) CircSize(f) < s

@ & SAT > (f,s) CircSize(f) > s

Need to prove a circuit lower bound!

» Natural reduction techniques would imply
E & SIZE(nO(l)), [Kabanets-Cai (2000)]
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C-MCSP for a circuit class C

. Truthtable T € {0,1}? of a Is there a C-circuit of size < s
function f:{0,1}* — {0,1} that computes f?

* Size parameter s € N

— Theorem [Masek (1978 or 79, unpublished)]

DNF—MCSP is NP-hard.




DNF-MCSP

e Truthtable T € {0,1}%" of a s there a DNF formula of size
function f:{0,1}* — {0,1} < s that computes f?

* Size parameter s € N

Depth: 2
Size: 3 v
/ | \
7A\ N A\
/N /N -

_le xz xz _|x3 _Ixz

Example of DNFs:

(mxy Axy) V (x, A—x3) V (Axy)

(The size of DNF) := #(clauses)



C-MCSP for C D DNF

» Beyond DNFs, no NP-hardness was proved since the work of
Masek (1979).

» To quote Allender, Hellerstein, McCabe, Pitassi, and Saks (2008):

“Thus an important open question is to resolve the NP-hardness of ...
function minimization results above for classes that are stronger than DNF.”



Known results about C-MCSP

More expressive

AN

MCSP Hardness based on
cryptography
e.g.) Blum integer
ACQ-MCSP for large d factorization [AHMPS08]

No hardness result

Depth3-MCSP

Known to be NP-hard
DNF-MCSP } [Masek (1979)]

Remark: The complexity is not necessarily monotone increasing or decreasing.
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Our Results

> The first NP-hardness result for C-MCSP for a class C D DNF

— Theorem (Main Result)

(DNF o XOR)—MCSP is NP-hard
under polynomial-time many-one reductions.

» Our proof techniques extend to:

 (DNF o MOD,,,)-MCSP' is NP-hard for any m = 2,
but the input is a truth table of an m-valued function

f:(Z/mZ)t - {0,1}.



DNF O XOR Cl F'Cu |tS (29(") circuit lower bound is known)

Example \%
size3 (A A A
/N 7/ 1

—|x2

YV

[Cohen & Shinkar (2016)]

Depth 3

15t layer: an OR gate
29 layer: AND gates
3" Jayer: XOR gates

(The size of DNF o XOR circuits) := (The number of AND gates)

» This is a convenient circuit size measure as advocated by Cohen & Shinkar (2016).

1. Nice combinatorial meaning

2. W.l.o.g.,, #(XOR gates) < n - #(AND gates)
» Our proof techniques extend to the number of all the gates in a DNF o XOR

formula.



DNF O XOR Cl F'Cu |tS (29(") circuit lower bound is known)

[Cohen & Shinkar (2016)]

Exampl v i
Xxampie Depth 3
Size 3 /{\ y /T\ 15t layer: an OR gate
& AN @ \@ D 2"d Jayer: AND gates
3" layer: XOR gates
/NN TN
_le _x2 —1Xq —lx2 e

1Dx)Dx, D1 Dx3) =1
X, D1 Px3)=1
« Some linear equations over GF(2)

— (x1,x5,x3) EA

(for some affine subspace A € GF(2)")

The subcircuit outputs1. & {



DNF O XOR Cl F'Cu |tS (29(") circuit lower bound is known)

f:{0,1}" - {0,1}
Example

V
Al/t;lz\As
N\ N\

Size 3 A

VAN

[Cohen & Shinkar (2016)]

Depth 3

15t layer: an OR gate
29 layer: AND gates
3" Jayer: XOR gates

f_l(l) :A1 UAZ UA3



The Important Observation

The minimum DNF o XOR circuit size for computing f

The minimum number m of affine subspaces needed to
cover f~1(1): that s,

A4, ..., A, affine subspaces of {0,1}"
A; € f71(1) and A;U--UA, =11
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» Our proof was inspired by a simple proof of Masek’s
result given by [Allender, Hellerstein, McCabe,
Pitassi, and Saks (2008)].

» We extend and generalize their ideas significantly.



Proof Outline

— Theorem (Main Result)

NP <P (DNF o XOR)—MCSP

Step 1.

Step 2.

Step 3.

2-factor approx. of ~zpp  (DNF o XOR)-MCSP
r-Bounded Set Cover ~ =m for partial functions

(NP-hard [Trevisan 2001])

(DNF o XOR)-MCSP <ZPP
—m

. : (DNF o XOR)-MCSP
for partial functions

Derandomization using e-biased generators
[Naor & Naor (1993)]
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The Set Cover Problem

Input: A universe U and a collection of sets § € 2V

Output: The minimum |C| such that C € § and
UceeC =U
Example: U={C ...}, S={["...}

|
[o][e

]




The Set Cover Problem

Input: A universe U and a collection of sets § € 2V

Output: The minimum |C| such that C € § and
UceeC =U
Example: U={C ...}, S={["...}

A minimum cover C: F




The r-Bounded Set Cover Problem

Input: A universe U and a collection of sets § € 2V
such that |S| < r forevery S € S.

Output: The minimum |C| such that C € § and
UceeC =U
Example: U = L, S={["..}
— 4-bounded,
\ Q Q @ but not 3-bounded

|

»
W

]

[Feige (1998)] [Trevisan (2001)]
Approximation of (1 — 0(1)) In7 is NP-hard. So that a 2-factor approx. is NP-hard.

» We set r to be large enough
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(DNF o XOR)-MCSP* for partial functions

* Truth table of a partial Is there a circuit of size < s
function that agrees with f on inputs
f:{0,1} - {0,1,%} from f~1({0,1})?

* Size parameter s € N

Example:
X

= O O
R O = O

1
*
0



— Claim

2-factor approx. of ~zpp  (DNF o XOR)-MCSP
r-Bounded Set Cover for partial functions

» Given: U={1,..,N},8§ ={S5,....5,,}
> Goal: Construct f:{0,1}* - {0,1,x} fort = O(log N)

Set Cover (DNF o XOR)-MCSP

ey s v~ {O,l}t (A uniformly random vector)

7 SiES v spaniesj(vi) c {0,1}*

Cover CS§ U span;es(v') € {0,1}
 sec



Set Cover (DNF o XOR)-MCSP A 2
¢ pan(viV7)
f:{0,1}" - {0,1,*}/

U=1{123}, S ={5,S5,}

A
S ={12} O v ’{ J 5 S?W(’Ul/ 'U/})
SV‘U*
! ¥ T ow e
2 3 8 s !**
5, =1{2,3) o W

> f(vi) = 1foranyi € U.
> f(x) = 0forall x ¢ span(v!,v?) U span(v?,v3).
> f(y) := * for any other vector y € {0,1}*.

* The minimum DNF o XOR circuit size for computing f

__The minimum number of affine subspaces A € f~*({1,})
needed to cover f~1(1) = {v}, v?, v3}.



Intuition: When A is Linear

Random linear subspaces of small dimension r

A € f71({1,#}) = span(v!,v?) U span(v?,v?)

— A S span(v?},v?)or A € span(v?,v?)
with high probability
(if A is a linear subspace)

The set of points { i € {1,2,3} | v' € A} covered by A

=
is contained in some legal set S; or S, € S.

—> The minimum number of linear subspaces needed to cover {v', v?, v3}
= The minimum set cover size



Intuition: When A is Affine

A € f71({1,#}) = span(vl,v?) U span(v?, v3)
)
— A S span(v?},v?)or A € span(v?,v?)
with high probability
(if A is an affine subspace)

Counterexample: 4 = {v1,v3} =v! P {0,v! @ v3}

» Still, we can prove that:

The set of points { i € {1,2,3} | v € A } covered by 4
is contained in S, U S, for some two legal sets S, 5, € §

— The minimum number of affine subspaces needed to cover {v!, v?, v3}
is a 2-factor approximation of the minimum set cover size.



Fomally: {013 - {014
1 (x =v'forsome i)

f(xX) =40  (x & Uses span;es(v'))
*  (otherwise)

——  Claim (Easy part)

(The minimum DNF o XOR circuit size) < (The minimum set cover size)

» By a delicate probabilistic argument, it can be shown:

—— Claim (Hard part)

Fort = O(rlog N), the following holds with high probability:
(The minimum set cover size) < 2 X (The minimum DNF o XOR circuit size)




Summary of Step 1

Input: U ={1,...,N}, S ={S, ..., Si;}
Let t := O(log N).
Pick v* ~ {0,1}¢ randomly for each i € U.

Verify that (vi)ieu satisfies a certain condition.

Define f:{0,1}* — {0,1,%} as follows and output its truth table.

A S i

1 (x= vt for some i)
flx) =40 (x & UgesSpanies(v?))
*  (otherwise)
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Step 2: Making it a total function

— Claim

(DNF o XOR)-MCSP _zPP  (pNF 0 XOR)-MCSP
for partial functions

> Given: a partial function f:{0,1}* - {0,1,%}
> Output: a total function g: {0,1}**S - {0,1}

> For each x € {0,1}%, we encode each value f(x) € {0,1,}
as a Boolean function g, :== g(x,-) on a hypercube {0,1}".



gx: {0’1}5 — {011}
For each x € {0,1}*:

Y g =fw
f(x) € {011} gx()’) =0
® elsewhere
e
) = *
o

> Pick a random linear subspace L, 2>
and define g, as its characteristic function.

» Define g(x,y) = g,(y).



— Claim

The following holds with high probability:

(The minimum DNF o XOR circuit size for g)
= (The minimum circuit size for f) + |f_1(*)|

ldea:

>Imagine an optimal way of covering g~ 1(1).
e g 1(1) consists of f71(1) x {0} and {x} X L, foreach x € f~1(x).

>In order to cover g~1(1) by affine subspaces, random linear
subspaces {x} X L, should be used for each x € f~1(»).

>Then we need to cover f~1(1) x {0}%, but we may optionally
cover f~1(x) x {0}5.
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Step 3: Derandomization

Fact (folklore; a nearly optimal PRG for AND o XOR circuits)

Any e-biased generator e-fools any AND o XOR circuit.

» Can be proved by using a simple Fourier analysis.

» Our probabilistic arguments work even if randomness is replaced
by the output of an e-biased generator.

e Careful analysis: sub-conditions can be checked by AND o XOR circuits

» Extending the fact to AND o MOD,,, requires some extra work.



Open Problems

> NP-hardness of Depth3-AC°-MCSP under
guasipolynomial-time deterministic reductions, or
randomized polynomial-time reductions?

* The Kabanets-Cai obstacle is not applied to these
reductions.

»What about C-MCSP for ¢ = MAJ o MA], OR o MAJ?



