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Minimum Circuit Size Problem (MCSP)

Input

𝒙𝟏 𝒙𝟐 𝒙𝟏⊕𝒙𝟐

0 0 0

0 1 1

1 0 1

1 1 0

• Truth table 𝑇 ∈ 0,1 2𝑡 of a 
function 𝑓: 0,1 𝑡 → 0,1

Output

Is there a circuit of size ≤ 𝑠
that computes 𝑓?

Example:

𝑠 = 5

𝑓 =

Output: “YES”

• Size parameter 𝑠 ∈ ℕ



Brief History of MCSP

1970s Levin delayed publishing his work because
he wanted to say something about MCSP.

2000 Kabanets and Cai revived interest,
based on natural proofs. [Razborov & Rudich (1997)]

1950s Recognized as an important problem
in the Soviet Union [Trakhtenbrot’s survey]

1979 Masek proved NP-completeness of DNF-MCSP.

Since then many papers and results appeared;
however, the complexity of MCSP remains elusive.



Current Knowledge about MCSP

✓No strong evidence against NP-completeness
• Weak evidence: [Hirahara-Santhanam (CCC’17)] [Allender-Hirahara 17]…

✓No strong evidence for NP-completeness
• Some new evidence: [Impagliazzo-Kabanets-Volkvovich (CCC’18)] & This work

➢ Lower bound: ∃pseudorandom function generators ⟹MCSP ∉ 𝐏

➢ No consensus about the exact complexity of MCSP

➢ Big Open Question: Is MCSP NP-hard?

➢ Upper bound: MCSP ∈ 𝐍𝐏



Kabanets-Cai Obstacle: Why so difficult?

𝜑 ∈ SAT ↦

➢ Suppose that we want to construct a reduction
from SAT to MCSP.

(𝑓, 𝑠)

𝜑 ∉ SAT ↦ (𝑓, 𝑠)

CircSize 𝑓 ≤ 𝑠

CircSize 𝑓 > 𝑠

Need to prove a circuit lower bound!

➢ Natural reduction techniques would imply

E ⊈ SIZE 𝑛𝑂 1 . [Kabanets-Cai (2000)]
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𝒞-MCSP for a circuit class 𝒞

Input

• Truth table 𝑇 ∈ 0,1 2𝑡 of a 
function 𝑓: 0,1 𝑡 → 0,1

Output

Is there a 𝒞-circuit of size ≤ 𝑠
that computes 𝑓?

• Size parameter 𝑠 ∈ ℕ

DNF−MCSP is NP-hard.

Theorem [Masek (1978 or 79, unpublished)]



DNF-MCSP

Input

• Truth table 𝑇 ∈ 0,1 2𝑡 of a 
function 𝑓: 0,1 𝑡 → 0,1

Output

Is there a DNF formula of size 
≤ 𝑠 that computes 𝑓?

• Size parameter 𝑠 ∈ ℕ

Example of DNFs:

Depth: 2

¬𝑥1 ∧ 𝑥2 ∨ 𝑥2 ∧ ¬𝑥3 ∨ ¬𝑥2
∧

∨

∧

¬𝑥1

∧

𝑥2 𝑥2 ¬𝑥3 ¬𝑥2

≡

The size of DNF ≔ #(clauses)

Size: 3



𝒞-MCSP for 𝒞 ⊃ DNF

➢ Beyond DNFs, no NP-hardness was proved since the work of 
Masek (1979).

➢ To quote Allender, Hellerstein, McCabe, Pitassi, and Saks (2008):

“Thus an important open question is to resolve the NP-hardness of … 
function minimization results above for classes that are stronger than DNF.”



Known results about 𝒞-MCSP

DNF-MCSP

AC𝑑
0-MCSP for large 𝑑

MCSP Hardness based on 
cryptography

Known to be NP-hard
[Masek (1979)]

More expressive

Depth3-MCSP

⋯
⋯

No hardness result

Remark: The complexity is not necessarily monotone increasing or decreasing.

e.g.) Blum integer 
factorization [AHMPS08]
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➢ The first NP-hardness result for 𝒞-MCSP for a class 𝒞 ⊃ DNF

Our Results

➢ Our proof techniques extend to:

• DNF ∘ MOD𝑚 -MCSP′ is NP-hard for any 𝑚 ≥ 2,
but the input is a truth table of an 𝑚-valued function 
𝑓: ℤ/𝑚ℤ 𝑡 → 0,1 .

DNF ∘ XOR −MCSP is NP-hard
under polynomial-time many-one reductions.

Theorem (Main Result)



DNF ∘ XOR circuits

Depth 3

∧

∨

∧

¬𝑥1

∧

𝑥2 ¬𝑥3 ¬𝑥2
The size of DNF ∘ XOR circuits ≔ The number of AND gates

⊕ ⊕ ⊕ ⊕

Example

1st layer: an OR gate
2nd layer: AND gates
3rd layer: XOR gates

Size 3

➢ This is a convenient circuit size measure as advocated by Cohen & Shinkar (2016).

1. Nice combinatorial meaning
2. W.l.o.g., # XOR gates ≤ 𝑛 ⋅ #(AND gates)

(2Ω 𝑛 circuit lower bound is known)
[Cohen & Shinkar (2016)]

➢ Our proof techniques extend to the number of all the gates in a DNF ∘ XOR
formula.



DNF ∘ XOR circuits

Depth 3

∧

∨

∧

¬𝑥1

∧

𝑥2 ¬𝑥3 ¬𝑥2

⊕ ⊕ ⊕ ⊕

Example

1st layer: an OR gate
2nd layer: AND gates
3rd layer: XOR gates

Size 3

1⊕ 𝑥1 ⊕𝑥2 ⊕ 1⊕ 𝑥3 = 1

𝑥2 ⊕ 1⊕ 𝑥3 = 1
The subcircuit outputs 1. ⟺

⟺ 𝑥1, 𝑥2, 𝑥3 ∈ 𝐴
(for some affine subspace 𝐴 ⊆ GF 2 𝑛)

← Some linear equations over GF 2

(2Ω 𝑛 circuit lower bound is known)
[Cohen & Shinkar (2016)]



DNF ∘ XOR circuits

Depth 3

∧

∨

∧

¬𝑥1

∧

𝑥2 ¬𝑥3 ¬𝑥2

⊕ ⊕ ⊕ ⊕

Example

1st layer: an OR gate
2nd layer: AND gates
3rd layer: XOR gates

Size 3

𝑓: 0,1 𝑛 → 0,1

𝐴1 𝐴2
𝐴3

𝑓−1 1 = 𝐴1 ∪ 𝐴2 ∪ 𝐴3

(2Ω 𝑛 circuit lower bound is known)
[Cohen & Shinkar (2016)]



The Important Observation

The minimum DNF ∘ XOR circuit size for computing 𝑓

The minimum number 𝑚 of affine subspaces needed to
cover 𝑓−1 1 : that is,

∃𝐴1, … , 𝐴𝑚: affine subspaces of 0,1 𝑛
=

𝐴𝑖 ⊆ 𝑓−1 1 𝐴1 ∪⋯∪ 𝐴𝑚 = 𝑓−1 1and
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➢Our proof was inspired by a simple proof of Masek’s
result given by [Allender, Hellerstein, McCabe, 
Pitassi, and Saks (2008)]. 

➢We extend and generalize their ideas significantly.



Proof Outline

2-factor approx. of
𝑟-Bounded Set Cover ≤𝑚

ZPP DNF ∘ XOR -MCSP
for partial functions

DNF ∘ XOR -MCSP≤𝑚
ZPP

[Naor & Naor (1993)]

(NP-hard [Trevisan 2001])

Derandomization using 𝜖-biased generators

NP ≤𝑚
𝑝

DNF ∘ XOR −MCSP

Theorem (Main Result)

Step 1.

Step 2. DNF ∘ XOR -MCSP
for partial functions

Step 3.
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The Set Cover Problem

The minimum 𝒞 such that 𝒞 ⊆ 𝒮 and 
𝐶∈𝒞ڂ 𝐶 = 𝑈

Example:  𝑈 = { … },  𝒮 = { … }

Input: A universe 𝑈 and a collection of sets 𝒮 ⊆ 2𝑈

Output:



The Set Cover Problem

The minimum 𝒞 such that 𝒞 ⊆ 𝒮 and 
𝐶∈𝒞ڂ 𝐶 = 𝑈

Example:  𝑈 = { … },  𝒮 = { … }

Input: A universe 𝑈 and a collection of sets 𝒮 ⊆ 2𝑈

Output:

A minimum cover 𝒞:



The 𝑟-Bounded Set Cover Problem

The minimum 𝒞 such that 𝒞 ⊆ 𝒮 and 
𝐶∈𝒞ڂ 𝐶 = 𝑈

Example:  𝑈 = { … },  𝒮 = { … }

Input: A universe 𝑈 and a collection of sets 𝒮 ⊆ 2𝑈

Output:

such that 𝑆 ≤ 𝑟 for every 𝑆 ∈ 𝒮.

4-bounded,
but not 3-bounded

[Feige (1998)] [Trevisan (2001)]

Approximation of  1 − 𝑜 1 ln 𝑟 is NP-hard.

➢ We set 𝑟 to be large enough
so that a 2-factor approx. is NP-hard.
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DNF ∘ XOR -MCSP∗ for partial functions

𝒙𝟏 𝒙𝟐 𝒇 𝒙𝟏, 𝒙𝟐

0 0 ∗

0 1 1

1 0 ∗

1 1 0

Example:

𝑓 =

Input

• Truth table of a partial
function
𝑓: 0,1 𝑡 → 0,1,∗

Output

Is there a circuit of size ≤ 𝑠
that agrees with 𝑓 on inputs
from 𝑓−1 0,1 ?

• Size parameter 𝑠 ∈ ℕ



2-factor approx. of
𝑟-Bounded Set Cover

≤𝑚
ZPP

Claim

DNF ∘ XOR -MCSP
for partial functions

➢ Given: 𝑈 = 1,… ,𝑁 , 𝒮 = {𝑆1, … , 𝑆𝑚}

𝑖 ∈ 𝑈 𝑣𝑖 ∼ 0,1 𝑡 (A uniformly random vector)

𝑆𝑗 ∈ 𝒮 span𝑖∈𝑆𝑗 𝑣
𝑖 ⊆ 0,1 𝑡

DNF ∘ XOR -MCSPSet Cover

↦

↦

𝒞 ⊆ 𝒮Cover ↦ ራ

𝑆∈𝒞

span𝑖∈𝑆 𝑣𝑖 ⊆ 0,1 𝑡

➢ Goal: Construct 𝑓: 0,1 𝑡 → 0,1,∗ for 𝑡 = 𝑂 log𝑁



1

𝑈 = 1,2,3 , 𝒮 = {𝑆1, 𝑆2}

2 3

𝑆1 = 1,2

𝑆2 = 2,3

DNF ∘ XOR -MCSPSet Cover

➢ 𝑓 𝑣𝑖 ≔ 1 for any 𝑖 ∈ 𝑈.

➢ 𝑓 𝑥 ≔ 0 for all 𝑥 ∉ span 𝑣1, 𝑣2 ∪ span 𝑣2, 𝑣3 .

➢ 𝑓 𝑦 ≔ ∗ for any other vector 𝑦 ∈ 0,1 𝑡.

• The minimum DNF ∘ XOR circuit size for computing 𝑓

The minimum number of affine subspaces 𝐴 ⊆ 𝑓−1 1,∗
needed to cover 𝑓−1 1 = 𝑣1, 𝑣2, 𝑣3 .

=

𝑓: 0,1 𝑡 → 0,1,∗



Intuition: When 𝐴 is Linear

𝐴 ⊆ 𝑓−1 1,∗ = span 𝑣1, 𝑣2 ∪ span(𝑣2, 𝑣3)

⟹
with high probability

(if 𝐴 is a linear subspace)

𝐴 ⊆ span 𝑣1, 𝑣2 or 𝐴 ⊆ span(𝑣2, 𝑣3)

⟹ The set of points 𝑖 ∈ 1,2,3 𝑣𝑖 ∈ 𝐴 } covered by 𝐴
is contained in some legal set 𝑆1 or 𝑆2 ∈ 𝒮.

⟹ The minimum number of linear subspaces needed to cover {𝑣1, 𝑣2, 𝑣3}

= The minimum set cover size

Random linear subspaces of small dimension 𝑟



Intuition: When 𝐴 is Affine

𝐴 ⊆ 𝑓−1 1,∗ = span 𝑣1, 𝑣2 ∪ span(𝑣2, 𝑣3)

⟹
with high probability

(if 𝐴 is an affine subspace)

𝐴 ⊆ span 𝑣1, 𝑣2 or 𝐴 ⊆ span(𝑣2, 𝑣3)

The set of points 𝑖 ∈ 1,2,3 𝑣𝑖 ∈ 𝐴 } covered by 𝐴
is contained in 𝑆𝑎 ∪ 𝑆𝑏 for some two legal sets 𝑆𝑎 , 𝑆𝑏 ∈ 𝒮

⟹ The minimum number of affine subspaces needed to cover 𝑣1, 𝑣2, 𝑣3

is a 2-factor approximation of the minimum set cover size.

?

Counterexample: 𝐴 ≔ 𝑣1, 𝑣3 = 𝑣1 ⊕ 0, 𝑣1 ⊕𝑣3

➢ Still, we can prove that:



Fomally:

For 𝑡 ≥ 𝑂 𝑟 log𝑁 , the following holds with high probability:
The minimum set cover size ≤ 2 × The minimum DNF ∘ XOR circuit size

Claim (Hard part)

The minimum DNF ∘ XOR circuit size ≤ The minimum set cover size

Claim (Easy part)

𝑓 𝑥 = ቐ
1
0
∗

(𝑥 = 𝑣𝑖 for some 𝑖)

(𝑥 ∉ 𝑆∈𝒮ڂ span𝑖∈𝑆(𝑣
𝑖))

(otherwise)

𝑓: 0,1 𝑡 → 0,1,∗

➢ By a delicate probabilistic argument, it can be shown:



Summary of Step 1

1. Input:  𝑈 = 1,… ,𝑁 , 𝒮 = {𝑆1, … , 𝑆𝑚}

2. Let 𝑡 ≔ Θ log𝑁 .

3. Pick 𝑣𝑖 ∼ 0,1 𝑡 randomly for each 𝑖 ∈ 𝑈.

4. Verify that 𝑣𝑖
𝑖∈𝑈

satisfies a certain condition.

5. Define 𝑓: 0,1 𝑡 → {0,1,∗} as follows and output its truth table.

𝑓 𝑥 = ቐ
1
0
∗

(𝑥 = 𝑣𝑖 for some 𝑖)

(𝑥 ∉ 𝑆∈𝒮ڂ span𝑖∈𝑆(𝑣
𝑖))

(otherwise)
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DNF ∘ XOR -MCSP
for partial functions

≤𝑚
ZPP

Claim

DNF ∘ XOR -MCSP

➢ Given: a partial function 𝑓: 0,1 𝑡 → {0,1,∗}

➢ Output: a total function 𝑔: 0,1 𝑡+𝑠 → 0,1

➢ For each 𝑥 ∈ 0,1 𝑡, we encode each value 𝑓 𝑥 ∈ {0,1,∗}
as a Boolean function 𝑔𝑥 ≔ 𝑔 𝑥,⋅ on a hypercube 0,1 𝑠.

Step 2: Making it a total function



𝑓 𝑥 ∈ 0,1

𝑓 𝑥

0

0
0

0 0

0

0

𝑓 𝑥 = ∗

1

1

1

0
0

0

0

𝑔𝑥: 0,1
𝑠 → 0,1

➢ Pick a random linear subspace 𝐿𝑥
and define 𝑔𝑥 as its characteristic function.

For each 𝑥 ∈ 0,1 𝑡:

➢ Define 𝑔 𝑥, 𝑦 ≔ 𝑔𝑥 𝑦 .

𝑔𝑥 0𝑠 ≔ 𝑓(𝑥)

𝑔𝑥 𝑦 ≔ 0
elsewhere



➢Imagine an optimal way of covering 𝑔−1 1 .
• 𝑔−1 1 consists of 𝑓−1 1 × 0 𝑠 and 𝑥 × 𝐿𝑥 for each 𝑥 ∈ 𝑓−1 ∗ .

➢In order to cover 𝑔−1 1 by affine subspaces, random linear 
subspaces 𝑥 × 𝐿𝑥 should be used for each 𝑥 ∈ 𝑓−1(∗).

➢Then we need to cover 𝑓−1 1 × 0 𝑠, but we may optionally
cover 𝑓−1 ∗ × 0 𝑠.

(The minimum DNF ∘ XOR circuit size for 𝑔)

=

Claim

(The minimum circuit size for 𝑓)  +  𝑓−1 ∗

The following holds with high probability:

Idea:
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Step 3: Derandomization

Fact (folklore; a nearly optimal PRG for AND ∘ XOR circuits)

Any 𝜖-biased generator 𝜖-fools any AND ∘ XOR circuit.

➢ Can be proved by using a simple Fourier analysis.

➢ Our probabilistic arguments work even if randomness is replaced
by the output of an 𝜖-biased generator.

• Careful analysis: sub-conditions can be checked by AND ∘ XOR circuits

➢ Extending the fact to AND ∘ MOD𝑚 requires some extra work.



Open Problems

➢NP-hardness of Depth3-AC0-MCSP under 
quasipolynomial-time deterministic reductions, or 
randomized polynomial-time reductions?
• The Kabanets-Cai obstacle is not applied to these 

reductions.

➢What about 𝒞-MCSP for 𝒞 = MAJ ∘ MAJ, OR ∘ MAJ?


