NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits

<u>Shuichi Hirahara (The University of Tokyo)</u> Igor C. Oliveira (University of Oxford) Rahul Santhanam (University of Oxford)

CCC 2018 @ San Diego

Talk Outline

- 1. MCSP and Its background
- *2.* C-MCSP for a circuit class C
- 3. Our Results
- 4. Proof Sketch

Talk Outline

- 1. MCSP and Its background
- *2.* C-MCSP for a circuit class C
- 3. Our Results
- 4. Proof Sketch

Minimum Circuit Size Problem (MCSP)

Input

- Truth table $T \in \{0,1\}^{2^t}$ of a function $f: \{0,1\}^t \rightarrow \{0,1\}$
- Size parameter $s \in \mathbb{N}$

Output

Is there a circuit of size $\leq s$ that computes f?

Example:

Brief History of MCSP

- 1950s Recognized as an important problem in the Soviet Union [Trakhtenbrot's survey]
- 1970s Levin delayed publishing his work because he wanted to say something about MCSP.
- 1979 Masek proved NP-completeness of DNF-MCSP.
- 2000 Kabanets and Cai revived interest, based on natural proofs. [Razborov & Rudich (1997)]

Since then many papers and results appeared; however, the complexity of MCSP remains elusive.

Current Knowledge about MCSP

- ▶ Upper bound: $MCSP \in NP$
- \succ Lower bound: \exists pseudorandom function generators \Longrightarrow MCSP \notin **P**

- Big Open Question: Is MCSP NP-hard?
- No consensus about the exact complexity of MCSP
 - ✓ No strong evidence *against* NP-completeness
 - Weak evidence: [Hirahara-Santhanam (CCC'17)] [Allender-Hirahara 17]...
 - ✓ No strong evidence *for* NP-completeness
 - Some new evidence: [Impagliazzo-Kabanets-Volkvovich (CCC'18)] & This work

Kabanets-Cai Obstacle: Why so difficult?

Suppose that we want to construct a reduction from SAT to MCSP.

- $\varphi \in SAT \mapsto (f,s) \quad CircSize(f) \le s$ $\varphi \notin SAT \mapsto (f,s) \quad CircSize(f) > s$ Need to prove a circuit lower bound!
- ➤ Natural reduction techniques would imply
 E ⊈ SIZE($n^{O(1)}$). [Kabanets-Cai (2000)]

Talk Outline

- 1. MCSP and Its background
- *2.* C-MCSP for a circuit class C
- 3. Our Results
- 4. Proof Sketch

\mathcal{C} -MCSP for a circuit class \mathcal{C}

Input

- Truth table $T \in \{0,1\}^{2^t}$ of a function $f: \{0,1\}^t \rightarrow \{0,1\}$
- Size parameter $s \in \mathbb{N}$

Output

Is there a C-circuit of size $\leq s$ that computes f?

Theorem [Masek (1978 or 79, unpublished)] –
 DNF—MCSP is NP-hard.

DNF-MCSP

Input

- Truth table $T \in \{0,1\}^{2^t}$ of a function $f: \{0,1\}^t \rightarrow \{0,1\}$
- Size parameter $s \in \mathbb{N}$

Output

Is there a **DNF** formula of size $\leq s$ that computes f?

Depth: 2

Example of DNFs: $(\neg x_1 \land x_2) \lor (x_2 \land \neg x_3) \lor (\neg x_2) \equiv$ (The size of DNF) := #(clauses)

\mathcal{C} -MCSP for $\mathcal{C} \supset$ DNF

Beyond DNFs, no NP-hardness was proved since the work of Masek (1979).

To quote Allender, Hellerstein, McCabe, Pitassi, and Saks (2008):

"Thus an **important open question** is to resolve the NP-hardness of ... function minimization results above for classes that are stronger than DNF."

Known results about $\mathcal{C} ext{-MCSP}$

More expressive

<u>Remark</u>: The complexity is not necessarily monotone increasing or decreasing.

Talk Outline

- 1. MCSP and Its background
- *2.* C-MCSP for a circuit class C
- 3. Our Results
- 4. Proof Sketch

Our Results

▶ The first NP-hardness result for C-MCSP for a class $C \supset DNF$

Theorem (Main Result)

(DNF • XOR)—MCSP is NP-hard under polynomial-time many-one reductions.

Our proof techniques extend to:

• $(DNF \circ MOD_m)$ -MCSP' is NP-hard for any $m \ge 2$, but the input is a truth table of an *m*-valued function $f: (\mathbb{Z}/m\mathbb{Z})^t \to \{0,1\}.$

DNF • XOR circuits $(2^{\Omega(n)} \text{ circuit lower bound is known})$ [Cohen & Shinkar (2016)]

(The size of DNF ∘ XOR circuits) ≔ (The number of AND gates)

> This is a convenient circuit size measure as advocated by Cohen & Shinkar (2016).

- 1. Nice combinatorial meaning
- 2. W.I.o.g., $\#(XOR \text{ gates}) \le n \cdot \#(AND \text{ gates})$
- Our proof techniques extend to the number of all the gates in a DNF XOR formula.

DNF o XOR circuits ($2^{\Omega(n)}$ circuit lower bound is known) [Cohen & Shinkar (2016)]

The subcircuit \bigtriangleup outputs 1. $\iff \begin{cases} (1 \oplus x_1) \oplus x_2 \oplus (1 \oplus x_3) = 1 \\ x_2 \oplus (1 \oplus x_3) = 1 \end{cases}$

 \leftarrow Some linear equations over GF(2)

$$\iff (x_1, x_2, x_3) \in A$$

(for some affine subspace $A \subseteq GF(2)^n$)

DNF • **XOR** circuits ($2^{\Omega(n)}$ circuit lower bound is known) [Cohen & Shinkar (2016)] $f: \{0,1\}^n \to \{0,1\}$ Example Depth 3 A_3 $\mathbf{4}_{2}$ Size 3 1st layer: an OR gate 2nd layer: AND gates 3rd layer: XOR gates χ_{γ} \boldsymbol{x}_2

$$f^{-1}(1) = A_1 \cup A_2 \cup A_3$$

The Important Observation

The minimum DNF \circ XOR circuit size for computing f

The minimum number m of affine subspaces needed to cover $f^{-1}(1)$: that is,

 $\exists A_1, \dots, A_m$: affine subspaces of $\{0,1\}^n$ $A_i \subseteq f^{-1}(1)$ and $A_1 \cup \dots \cup A_m = f^{-1}(1)$

Talk Outline

- 1. MCSP and Its background
- *2.* C-MCSP for a circuit class C
- 3. Our Results
- 4. Proof Sketch

Our proof was inspired by a simple proof of Masek's result given by [Allender, Hellerstein, McCabe, Pitassi, and Saks (2008)].

> We extend and generalize their ideas significantly.

Proof Outline

Theorem (Main Result)

$$NP \leq_m^p (DNF \circ XOR) - MCSP$$

Step 1.2-factor approx. of
r-Bounded Set Cover \leq_m^{ZPP} (DNF \circ XOR)-MCSP
for partial functions
(NP-hard [Trevisan 2001])

<u>Step 2.</u> (DNF \circ XOR)-MCSP for *partial* functions \leq_m^{ZPP} (DNF \circ XOR)-MCSP

<u>Step 3.</u> Derandomization using ϵ -biased generators [Naor & Naor (1993)]

Proof Outline

Theorem (Main Result)

$$NP \leq_m^p (DNF \circ XOR) - MCSP$$

Step 1.2-factor approx. of
r-Bounded Set Cover
(NP-hard [Trevisan 2001]) \leq_m^{ZPP} (DNF \circ XOR)-MCSP
for partial functions

<u>Step 2.</u> (DNF \circ XOR)-MCSP for *partial* functions \leq_m^{ZPP} (DNF \circ XOR)-MCSP

<u>Step 3.</u> Derandomization using ϵ -biased generators [Naor & Naor (1993)]

The Set Cover Problem

<u>Input</u>: A universe U and a collection of sets $S \subseteq 2^U$

<u>Output</u>: The minimum $|\mathcal{C}|$ such that $\mathcal{C} \subseteq S$ and $\bigcup_{C \in \mathcal{C}} C = U$

Example: $U = \{ \bigcirc \dots \bigcirc \}, S = \{ \bigtriangledown \dots \}$

The Set Cover Problem

<u>Input</u>: A universe U and a collection of sets $S \subseteq 2^U$

<u>Output</u>: The minimum $|\mathcal{C}|$ such that $\mathcal{C} \subseteq S$ and $\bigcup_{C \in \mathcal{C}} C = U$

Example: $U = \{ \bigcirc \dots \bigcirc \}, S = \{ \bigcirc \dots \}$

A minimum cover C:

The *r*-Bounded Set Cover Problem

Input: A universe U and a collection of sets $S \subseteq 2^U$ such that $|S| \leq r$ for every $S \in S$.

<u>Output</u>: The minimum $|\mathcal{C}|$ such that $\mathcal{C} \subseteq S$ and $\bigcup_{C \in \mathcal{C}} C = U$

[Feige (1998)] [Trevisan (2001)] Approximation of $(1 - o(1)) \ln r$ is NP-hard. So that a 2-factor approx. is NP-hard.

Proof Outline

Theorem (Main Result)

$$NP \leq_m^p (DNF \circ XOR) - MCSP$$

Step 1.2-factor approx. of
r-Bounded Set Cover
(NP-hard [Trevisan 2001]) \leq_m^{ZPP} (DNF \circ XOR)-MCSP
for partial functions

<u>Step 2.</u> (DNF \circ XOR)-MCSP for *partial* functions \leq_m^{ZPP} (DNF \circ XOR)-MCSP

<u>Step 3.</u> Derandomization using ϵ -biased generators [Naor & Naor (1993)]

(DNF • XOR)-MCSP* for partial functions

Input

- Truth table of a partial function $f: \{0,1\}^t \rightarrow \{0,1,*\}$
- Size parameter $s \in \mathbb{N}$

Output

Is there a circuit of size $\leq s$ that agrees with f on inputs from $f^{-1}(\{0,1\})$?

<u>Claim</u>

2-factor approx. of *r*-Bounded Set Cover

(DNF • XOR)-MCSP for partial functions

- ≻ Given: $U = \{1, ..., N\}, S = \{S_1, ..., S_m\}$
- ➤ Goal: Construct $f: \{0,1\}^t \rightarrow \{0,1,*\}$ for $t = O(\log N)$

 \leq_m^{ZPP}

Set Cover			(DNF • XOR)-MCSP	
	$i \in U$	↦	$v^i \sim \{0,1\}^t$	(A uniformly random vector)
	$S_j \in S$	↦	$\operatorname{span}_{i\in S_j}(v^i)\subseteq$	$\{0,1\}^t$
Cover	$\mathcal{C} \subseteq \mathcal{S}$	↦	$\bigcup_{S\in\mathcal{C}}\operatorname{span}_{i\in S}(v^i$	$\Big) \subseteq \{0,1\}^t$

- ▶ $f(v^i) \coloneqq 1$ for any $i \in U$.
- ► $f(x) \coloneqq 0$ for all $x \notin \operatorname{span}(v^1, v^2) \cup \operatorname{span}(v^2, v^3)$.
- → $f(y) \coloneqq *$ for any other vector $y \in \{0,1\}^t$.
- The minimum DNF \circ XOR circuit size for computing f
 - = The minimum number of affine subspaces $A \subseteq f^{-1}(\{1,*\})$ needed to cover $f^{-1}(1) = \{v^1, v^2, v^3\}$.

Intuition: When A is Linear

Random linear subspaces of small dimension r

 $A\subseteq f^{-1}(\{1,*\})=\operatorname{span}\left(v^1,v^2\right)\cup\operatorname{span}(v^2,v^3)$

$$\Rightarrow A \subseteq \operatorname{span}(v^1, v^2) \text{ or } A \subseteq \operatorname{span}(v^2, v^3)$$

with high probability

(if A is a linear subspace)

⇒ The set of points { $i \in \{1,2,3\} | v^i \in A$ } covered by A is contained in some legal set S_1 or $S_2 \in S$.

The minimum number of linear subspaces needed to cover $\{v^1, v^2, v^3\}$ = The minimum set cover size

Intuition: When A is Affine

$$A \subseteq f^{-1}(\{1,*\}) = \operatorname{span}(v^1, v^2) \cup \operatorname{span}(v^2, v^3)$$

$$\xrightarrow{?} A \subseteq \operatorname{span}(v^1, v^2) \text{ or } A \subseteq \operatorname{span}(v^2, v^3)$$

with high probability

(if A is an affine subspace)

<u>Counterexample</u>: $A \coloneqq \{v^1, v^3\} = v^1 \oplus \{0, v^1 \oplus v^3\}$

Still, we can prove that:

The set of points { $i \in \{1,2,3\} | v^i \in A$ } covered by *A* is contained in $S_a \cup S_b$ for some two legal sets $S_a, S_b \in S$

The minimum number of affine subspaces needed to cover $\{v^1, v^2, v^3\}$ is a 2-factor approximation of the minimum set cover size.

Fomally: $f: \{0,1\}^t \to \{0,1,*\}$ $f(x) = \begin{cases} 1 & (x = v^i \text{ for some } i) \\ 0 & (x \notin \bigcup_{S \in S} \operatorname{span}_{i \in S}(v^i)) \\ * & (\text{otherwise}) \end{cases}$

Claim (Easy part)

(The minimum DNF \circ XOR circuit size) \leq (The minimum set cover size)

> By a delicate probabilistic argument, it can be shown:

<u>Claim (Hard part)</u>

For $t \ge O(r \log N)$, the following holds with high probability: (The minimum set cover size) $\le 2 \times$ (The minimum DNF \circ XOR circuit size)

Summary of Step 1

- 1. Input: $U = \{1, ..., N\}, S = \{S_1, ..., S_m\}$
- 2. Let $t \coloneqq \Theta(\log N)$.
- 3. Pick $v^i \sim \{0,1\}^t$ randomly for each $i \in U$.
- 4. Verify that $(v^i)_{i \in U}$ satisfies a certain condition.
- 5. Define $f: \{0,1\}^t \rightarrow \{0,1,*\}$ as follows and output its truth table.

$$f(x) = \begin{cases} 1 & (x = v^i \text{ for some } i) \\ 0 & (x \notin \bigcup_{S \in S} \operatorname{span}_{i \in S}(v^i)) \\ * & (\text{otherwise}) \end{cases}$$

Proof Outline

Theorem (Main Result)

$$NP \leq_m^p (DNF \circ XOR) - MCSP$$

Step 1.2-factor approx. of
r-Bounded Set Cover \leq_m^{ZPP} (DNF \circ XOR)-MCSP
for partial functions
(NP-hard [Trevisan 2001])

 $\underbrace{\text{Step 2.}}_{\text{for partial functions}} (\text{DNF} \circ \text{XOR}) - \text{MCSP} \leq_m^{\text{ZPP}} (\text{DNF} \circ \text{XOR}) - \text{MCSP}$

<u>Step 3.</u> Derandomization using ϵ -biased generators [Naor & Naor (1993)]

Step 2: Making it a total function

<u>Claim</u>

 $(DNF \circ XOR)-MCSP$ for partial functions \leq_m^{ZPP} (DNF $\circ XOR$)-MCSP

- ➤ Given: a partial function $f: \{0,1\}^t \rightarrow \{0,1,*\}$
- ➤ Output: a total function $g: \{0,1\}^{t+s} \rightarrow \{0,1\}$

For each $x \in \{0,1\}^t$, we encode each value $f(x) \in \{0,1,*\}$ as a Boolean function $g_x \coloneqq g(x,\cdot)$ on a hypercube $\{0,1\}^s$.

 $g_{\chi}: \{0,1\}^{s} \to \{0,1\}$

➤ Define $g(x, y) \coloneqq g_x(y)$.

<u>Claim</u>

The following holds with high probability:

(The minimum DNF \circ XOR circuit size for g)

= (The minimum circuit size for f) + $|f^{-1}(*)|$

Idea:

>Imagine an optimal way of covering $g^{-1}(1)$.

- $g^{-1}(1)$ consists of $f^{-1}(1) \times \{0\}^s$ and $\{x\} \times L_x$ for each $x \in f^{-1}(*)$.
- ➤ In order to cover $g^{-1}(1)$ by affine subspaces, random linear subspaces $\{x\} \times L_x$ should be used for each $x \in f^{-1}(*)$.
- Then we need to cover $f^{-1}(1) \times \{0\}^s$, but we may optionally cover $f^{-1}(*) \times \{0\}^s$.

Proof Outline

Theorem (Main Result)

$$NP \leq_m^p (DNF \circ XOR) - MCSP$$

Step 1.2-factor approx. of
r-Bounded Set Cover \leq_m^{ZPP} (DNF \circ XOR)-MCSP
for partial functions
(NP-hard [Trevisan 2001])

<u>Step 2.</u> (DNF \circ XOR)-MCSP for *partial* functions \leq_m^{ZPP} (DNF \circ XOR)-MCSP

Step 3.Derandomization using ϵ -biased generators[Naor & Naor (1993)]

Step 3: Derandomization

Fact (folklore; a nearly optimal PRG for AND • XOR circuits)

Any ϵ -biased generator ϵ -fools any AND \circ XOR circuit.

- Can be proved by using a simple Fourier analysis.
- > Our probabilistic arguments work even if randomness is replaced by the output of an ϵ -biased generator.
 - Careful analysis: sub-conditions can be checked by AND XOR circuits
- \blacktriangleright Extending the fact to AND \circ MOD_m requires some extra work.

Open Problems

- ➢NP-hardness of Depth3-AC⁰-MCSP under quasipolynomial-time deterministic reductions, or randomized polynomial-time reductions?
 - The Kabanets-Cai obstacle is not applied to these reductions.
- \blacktriangleright What about C-MCSP for $C = MAJ \circ MAJ, OR \circ MAJ?$