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𝑈 :	Random	variable	uniform	over	 −1,1 * :	truly	random	object

A	random	variable	𝑋 over	 −1,1 * is	𝜀-pseudorandom	for	ℱ (𝑋 𝜀-foolsℱ)	if	
𝔼𝑓 𝑋 − 𝔼𝑓 𝑈 ≤ 𝜀							∀𝑓 ∈ ℱ
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Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.
Algorithm	should	be	“explicit”/	”easy	to	compute”

𝐺: −1,1 4 ⟶ −1,1 *

𝑋 = 𝐺 𝑈4 where	𝑈4 is	uniform	over	 −1,1 4

𝑠 is	called	seed	length
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Example

Example	1:	 Tests:	𝔽7* characters
ℱ = 𝑓 𝑥 = ∏ 𝑥::∈; 				 ∶ 				𝑆 ⊆ 𝑛
𝑋 ∶ 𝜀-bias	random	variable

• PRGs	with	optimal	seed	length	𝑂 log 𝑛/𝜀 are	known.
• Initiated	by	[Naor-Naor’90],	found	many	applications
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Fractional	PRGs

𝑓: −1,1 * → −1,1 multi−linear 	extension 𝑓: ℝ* → ℝ

Only	consider	points	in	[−1,1]* so	𝑓: [−1,1]*→ [−1,1]
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𝑋 ∈ −1,1 * ε-fools	ℱ	if	

𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀, 	 ∀𝑓 ∈ ℱ
because	𝔼𝑓 𝑈* = 𝑓 𝔼𝑈* = 𝑓 0
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PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Fractional PRG	(f-PRG):	random	variable	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀

Trivial	f-PRG:	𝑋 ≡ 0 ;	we	will	rule	it	out	later.
Question.	 Are	f-PRGs	easier	to	construct	than	PRGs?

Can	f-PRGs	be	used	to	construct	PRGs?
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How	to	convert	𝑋 ∈ −1,1 * to	𝑋L ∈ −1,1 *?
Main	idea:	 do	a	random	walk	that	converges	to	 −1,1 *

the	steps of	the	random	walk	are	from	𝑋

Recall:	f-PRG	is	𝑋 = (𝑋M,⋯ , 𝑋*) ∈ [−1,1]* where	 𝔼	𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Trivial	solution:	𝑋 ≡ 0

Need	to	enforce	non-triviality:	require 𝔼	 𝑋: 7 ≥ 𝑝 for	all	𝑖 = 1, … , 𝑛
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• If	𝑋	has	seed	length	𝑠 then 𝑋′ has	seed	length	𝑡𝑠
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𝑓: −1,1 * → −1,1 , g |𝑓f 𝑆 | ≤ 𝑐h
;: ; ih

					∀𝑘 ≥ 1

seed	length	=	𝑐7 log *
u

log log 𝑛 + log M
u

Classes	of	functions:
Functions	with	sensitivity	𝑠:	

𝑐 = 𝑂(𝑠) Gopalan-Servedio-Wigderson’16	
Permutation	branching	programs	of	width	𝑤:	

𝑐 = 𝑂(𝑤7) Reingold-Steinke-Vadhan’13	
Read	once	branching	programs	of	width	𝑤:	

𝑐 = logw 𝑛 Chattopadhyay-Hatami-Reingold-Tal’18	
Circuits	of	depth	𝑑:	

𝑐 = logy 𝑠 Tal’17
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• Can	we	use	less	independence?

• If	function	class	ℱ is	“simple”,	can	we	terminate	the	random	walk	earlier?

• Can	we	construct	hitting	sets	this	way?

• Can	we	construct	other	pseudorandom	objects	in	this	way?

Questions



Thank	you!


