
Pseudorandom	generators	
from	polarizing	random	walks

Kaave Hosseini (UC	San	Diego)

Eshan Chattopadhyay (IAS	→ Cornell)
Pooya Hatami (UT	Austin	→	Ohio	State)	

Shachar Lovett (UC	San	Diego)



Outline

Introduce	Pseudorandom	generators	(PRGs)

New	approach	to	construct	PRGs

Open	problems



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	

ℱ = 	 𝑓: −1,1 * ⟶ −1,1 	 family	of	functions		 :	tests



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	

ℱ = 	 𝑓: −1,1 * ⟶ −1,1 	 family	of	functions		 :	tests

𝑈 :	Random	variable	uniform	over	 −1,1 * :	truly	random	object



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	

ℱ = 	 𝑓: −1,1 * ⟶ −1,1 	 family	of	functions		 :	tests

𝑈 :	Random	variable	uniform	over	 −1,1 * :	truly	random	object

A	random	variable	𝑋 over	 −1,1 *



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	

ℱ = 	 𝑓: −1,1 * ⟶ −1,1 	 family	of	functions		 :	tests

𝑈 :	Random	variable	uniform	over	 −1,1 * :	truly	random	object

A	random	variable	𝑋 over	 −1,1 * is	𝜀-pseudorandom	for	ℱ if	
𝔼𝑓 𝑋 − 𝔼𝑓 𝑈 ≤ 𝜀							∀𝑓 ∈ ℱ



Introducing	Pseudorandom	generators(PRGs)

Definition	of	pseudorandom	generator	(PRG):	

ℱ = 	 𝑓: −1,1 * ⟶ −1,1 	 family	of	functions		 :	tests

𝑈 :	Random	variable	uniform	over	 −1,1 * :	truly	random	object

A	random	variable	𝑋 over	 −1,1 * is	𝜀-pseudorandom	for	ℱ (𝑋 𝜀-foolsℱ)	if	
𝔼𝑓 𝑋 − 𝔼𝑓 𝑈 ≤ 𝜀							∀𝑓 ∈ ℱ



Introducing	Pseudorandom	generators(PRGs)

Goal:	Construct	random	variable	𝑋.



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.
Algorithm	should	be	“explicit”/	”easy	to	compute”



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.
Algorithm	should	be	“explicit”/	”easy	to	compute”

𝐺: −1,1 4 ⟶ −1,1 *



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.
Algorithm	should	be	“explicit”/	”easy	to	compute”

𝐺: −1,1 4 ⟶ −1,1 *

𝑋 = 𝐺 𝑈4 where	𝑈4 is	uniform	over	 −1,1 4



Introducing	Pseudorandom	generators(PRGs)

Question.	What	do	we	mean	by	“construct”	𝑋?
An	algorithm	to	sample random	variable	𝑋 ∈ −1,1 *

Use	few coin	flips	in	the	construction.
Algorithm	should	be	“explicit”/	”easy	to	compute”

𝐺: −1,1 4 ⟶ −1,1 *

𝑋 = 𝐺 𝑈4 where	𝑈4 is	uniform	over	 −1,1 4

𝑠 is	called	seed	length



Example

Example	1:	 Tests:	𝔽7* characters
ℱ = 𝑓 𝑥 = ∏ 𝑥::∈; 				 ∶ 				𝑆 ⊆ 𝑛



Example

Example	1:	 Tests:	𝔽7* characters
ℱ = 𝑓 𝑥 = ∏ 𝑥::∈; 				 ∶ 				𝑆 ⊆ 𝑛
𝑋 ∶ 𝜀-bias	random	variable



Example

Example	1:	 Tests:	𝔽7* characters
ℱ = 𝑓 𝑥 = ∏ 𝑥::∈; 				 ∶ 				𝑆 ⊆ 𝑛
𝑋 ∶ 𝜀-bias	random	variable

• PRGs	with	optimal	seed	length	𝑂 log 𝑛/𝜀 are	known.



Example

Example	1:	 Tests:	𝔽7* characters
ℱ = 𝑓 𝑥 = ∏ 𝑥::∈; 				 ∶ 				𝑆 ⊆ 𝑛
𝑋 ∶ 𝜀-bias	random	variable

• PRGs	with	optimal	seed	length	𝑂 log 𝑛/𝜀 are	known.
• Initiated	by	[Naor-Naor’90],	found	many	applications



Fractional	PRGs

𝑓: −1,1 * → −1,1

-1

-11

1

1

11

-1



Fractional	PRGs

𝑓: −1,1 * → −1,1 multi−linear 	extension 𝑓: ℝ* → ℝ

-1

-11

1

1

11

-1



Fractional	PRGs

𝑓: −1,1 * → −1,1 multi−linear 	extension 𝑓: ℝ* → ℝ

Only	consider	points	in	[−1,1]* so	𝑓: [−1,1]*→ [−1,1]

-1

-11

1

1

11

-1



Fractional	PRGs

Equivalent	definition	of	PRG:
𝑋 ∈ −1,1 * ε-fools	ℱ	if	

𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀, 	 ∀𝑓 ∈ ℱ

-1

-11

1

1

11

-1



Fractional	PRGs

Equivalent	definition	of	PRG:
𝑋 ∈ −1,1 * ε-fools	ℱ	if	

𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀, 	 ∀𝑓 ∈ ℱ
because	𝔼𝑓 𝑈* = 𝑓 𝔼𝑈* = 𝑓 0

-1

-11

1

1

11

-1



Fractional	PRGs

PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀



Fractional	PRGs

PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Fractional	PRG	(f-PRG):	random	variable	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀



Fractional	PRGs

PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Fractional PRG	(f-PRG):	random	variable	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀

-1

-11

1

1

11

-1



Fractional	PRGs

PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Fractional PRG	(f-PRG):	random	variable	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀

Trivial	f-PRG:	𝑋 ≡ 0 ;	we	will	rule	it	out	later.

-1

-11

1

1

11

-1



Fractional	PRGs

PRG:		random	variable	𝑋 ∈ −1,1 * where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Fractional PRG	(f-PRG):	random	variable	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀

Trivial	f-PRG:	𝑋 ≡ 0 ;	we	will	rule	it	out	later.
Question.	 Are	f-PRGs	easier	to	construct	than	PRGs?

Can	f-PRGs	be	used	to	construct	PRGs?

-1

-11

1

1

11

-1



Fractional	PRGs

How	to	convert	𝑋 ∈ −1,1 * to	𝑋L ∈ −1,1 *?



Fractional	PRGs

How	to	convert	𝑋 ∈ −1,1 * to	𝑋L ∈ −1,1 *?
Main	idea:	 do	a	random	walk	that	converges	to	 −1,1 *



Fractional	PRGs

How	to	convert	𝑋 ∈ −1,1 * to	𝑋L ∈ −1,1 *?
Main	idea:	 do	a	random	walk	that	converges	to	 −1,1 *

the	steps of	the	random	walk	are	from	𝑋



Fractional	PRGs

How	to	convert	𝑋 ∈ −1,1 * to	𝑋L ∈ −1,1 *?
Main	idea:	 do	a	random	walk	that	converges	to	 −1,1 *

the	steps of	the	random	walk	are	from	𝑋

Recall:	f-PRG	is	𝑋 = (𝑋M,⋯ , 𝑋*) ∈ [−1,1]* where	 𝔼	𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Trivial	solution:	𝑋 ≡ 0

Need	to	enforce	non-triviality:	require 𝔼	 𝑋: 7 ≥ 𝑝 for	all	𝑖 = 1, … , 𝑛



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ
𝔼	 𝑋: 7 ≥ 𝑝	for	all	𝑖 = 1, … ,𝑛



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ
𝔼	 𝑋: 7 ≥ 𝑝	for	all	𝑖 = 1, … ,𝑛

Then	there	is		𝑋′ = 𝐺 𝑋M,… , 𝑋T	 such	that	𝑋M,… , 𝑋T are	independent	copies	of	𝑋,



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ
𝔼	 𝑋: 7 ≥ 𝑝	for	all	𝑖 = 1, … ,𝑛

Then	there	is		𝑋′ = 𝐺 𝑋M,… , 𝑋T	 such	that	𝑋M,… , 𝑋T are	independent	copies	of	𝑋,

𝑋′ ∈ −1,1 *:	 𝔼𝑓 𝑋′ − 𝑓(0) ≤ 𝜀𝑡			∀𝑓 ∈ ℱ



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ
𝔼	 𝑋: 7 ≥ 𝑝	for	all	𝑖 = 1, … ,𝑛

Then	there	is		𝑋′ = 𝐺 𝑋M,… , 𝑋T	 such	that	𝑋M,… , 𝑋T are	independent	copies	of	𝑋,

𝑋′ ∈ −1,1 *:	 𝔼𝑓 𝑋′ − 𝑓(0) ≤ 𝜀𝑡			∀𝑓 ∈ ℱ

𝑡 = 𝑂 M
V
log *

W



Constructing	PRGs	from	f-PRGs

Main	theorem:
Suppose:	

ℱ:	class	of	𝑛-variate	Boolean	functions,	closed	under	restrictions
𝑋 ∈ −1,1 *:	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀	∀𝑓 ∈ ℱ
𝔼	 𝑋: 7 ≥ 𝑝	for	all	𝑖 = 1, … ,𝑛

Then	there	is		𝑋′ = 𝐺 𝑋M,… , 𝑋T	 such	that	𝑋M,… , 𝑋T are	independent	copies	of	𝑋,

𝑋′ ∈ −1,1 *:	 𝔼𝑓 𝑋′ − 𝑓(0) ≤ 𝜀𝑡			∀𝑓 ∈ ℱ

𝑡 = 𝑂 M
V
log *

W

• If	𝑋	has	seed	length	𝑠 then 𝑋′ has	seed	length	𝑡𝑠



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



Random	walk	PRG:	First	step

Goal:	use	the	f-PRG	to	define	a	random	walk
f-PRG:	𝑋 ∈ [−1,1]* where	 𝔼𝑓 𝑋 − 𝑓(0) ≤ 𝜀
Equivalently:	1st step	from	0

Question:	what	about	the	2nd step?

We	have	to	assume	the	class	is	closed	under	restriction.
Lemma:	In	second	step	error	is	still	≤ 𝜀:	because	function	in	scaled	cube	is	in	the	
convex	hull	of	restrictions	of	𝑓.	



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof:		always	we	have	 1 − |𝑌:| 							 < 	 1 − 	 𝑌:ZM 1 −	𝑋:

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof:		always	we	have	 1 − |𝑌:| 							 < 	 1 − 	 𝑌:ZM 1 −	𝑋:
𝔼 1 − 𝑌: 	< 𝔼 1 −	 𝑌:ZM 𝔼 1 −	𝑋:

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof:		always	we	have	 1 − |𝑌:| 							 < 	 1 − 	 𝑌:ZM 1 −	𝑋:
𝔼 1 − 𝑌: 	< 𝔼 1 −	 𝑌:ZM 𝔼 1 −	𝑋:

𝔼 1 −	𝑋: = 1,	however,	𝔼 1−	𝑋: < 1 − 𝔼\`
]

a = 1− 𝑐

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof:		always	we	have	 1 − |𝑌:| 							 < 	 1 − 	 𝑌:ZM 1 −	𝑋:
𝔼 1 − 𝑌: 	< 𝔼 1 −	 𝑌:ZM 𝔼 1 −	𝑋:

𝔼 1 −	𝑋: = 1,	however,	𝔼 1−	𝑋: < 1 − 𝔼\`
]

a = 1− 𝑐

𝔼 1 − |𝑌:| < 𝔼 (1 −	 |𝑌:ZM|)	 1 − 𝑐 < 1 − 𝑐 : ∎

Proof	of	main	theorem:	fast	convergence



It’s	enough	to	prove	it	for	one	dimension:	 so	let	𝑋 be	a	r.v.	on	[−1,1]
Lemma:	Let	𝑌Y = 0	, 𝑌T = 𝑌TZM + 1 − 𝑌TZM 𝑋T be	a	random	walk	with	𝔼𝑋: = 0.

Then	after	𝑂 M
𝔼 \ ] log

M
W steps,	w.h.p 1 − 𝑌T ≤ 𝜀

Proof:		always	we	have	 1 − |𝑌:| 							 < 	 1 − 	 𝑌:ZM 1 −	𝑋:
𝔼 1 − 𝑌: 	< 𝔼 1 −	 𝑌:ZM 𝔼 1 −	𝑋:

𝔼 1 −	𝑋: = 1,	however,	𝔼 1−	𝑋: < 1 − 𝔼\`
]

a = 1− 𝑐

𝔼 1 − |𝑌:| < 𝔼 (1 −	 |𝑌:ZM|)	 1 − 𝑐 < 1 − 𝑐 : ∎
Round to	sign{𝑌T} once	the	random	walk	is	close	enough	to	the	boundary

Proof	of	main	theorem:	fast	convergence



Construction	of	fractional	PRGs



Construction	of	fractional	PRGs

𝑓: −1,1 * → {−1,1}

Fourier	coefficients:	𝑓f 𝑆 = 𝔼	𝑓 𝑥 ∏ 𝑥::∈; 	, 		𝑆 ⊆ [𝑛]	



Construction	of	fractional	PRGs

𝑓: −1,1 * → {−1,1}

Fourier	coefficients:	𝑓f 𝑆 = 𝔼	𝑓 𝑥 ∏ 𝑥::∈; 	, 		𝑆 ⊆ [𝑛]	

𝑓	has	bounded	Fourier	growth	if

g |𝑓f 𝑆 | ≤ 𝑐h
;: ; ih

					∀𝑘 ≥ 1

c = 𝑛 is	a	trivial	bound.



• 𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction	of	fractional	PRGs



• 𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

• Let	𝑌 ∈ −1,1 * be	a	𝜀-bias	r.v.	:	 𝔼∏ 𝑌::∈; < 𝜀		, ∀𝑆 ⊆ 𝑛 	, 𝑆 ≠ 𝜙	

Construction	of	fractional	PRGs



• 𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

• Let	𝑌 ∈ −1,1 * be	a	𝜀-bias	r.v.	:	 𝔼∏ 𝑌::∈; < 𝜀		, ∀𝑆 ⊆ 𝑛 	, 𝑆 ≠ 𝜙	

• Construction:	𝑋 = M
7o 𝑌 ,	note:	𝑋 ∈ − M

7o	 ,
M
7o	

*

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 𝔼∏ 𝑋::∈;;q∅

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝔼∏ 𝑌::∈;;q∅

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝔼∏ 𝑌::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝜀;q∅

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝔼∏ 𝑌::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝜀;q∅

≤ ∑ 𝑐h M
7o

h
𝜀hsM

Construction	of	fractional	PRGs



Proof	:

𝑓: −1,1 * → {−1,1}with	∑ |𝑓f 𝑆 | ≤ 𝑐h;: ; ih 							∀𝑘 ≥ 1

Construction:	𝑋 = M
7o 𝑌 , 𝑌 ∈ −1,1 * is	𝜀-bias	r.v:		|𝔼∏ 𝑌::∈; | < 𝜀	, ∀𝑆 ⊆ [𝑛]	,	

𝔼𝑓 𝑋 − 𝑓 0 = ∑ 𝑓f 𝑆 ⋅ 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 𝔼∏ 𝑋::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝔼∏ 𝑌::∈;;q∅

≤ ∑ 𝑓f 𝑆 M
7o

;
𝜀;q∅

≤ ∑ 𝑐h M
7o

h
𝜀hsM

≤ ∑ 2Zh𝜀hsM ≤ 𝜀

Construction	of	fractional	PRGs



𝑓: −1,1 * → −1,1 , g |𝑓f 𝑆 | ≤ 𝑐h
;: ; ih

					∀𝑘 ≥ 1

seed	length	=	𝑐7 log *
u log log𝑛 + log M

u

Construction	of	fractional	PRGs



𝑓: −1,1 * → −1,1 , g |𝑓f 𝑆 | ≤ 𝑐h
;: ; ih

					∀𝑘 ≥ 1

seed	length	=	𝑐7 log *
u

log log 𝑛 + log M
u

Classes	of	functions:
Functions	with	sensitivity	𝑠:	

𝑐 = 𝑂(𝑠) Gopalan-Servedio-Wigderson’16	
Permutation	branching	programs	of	width	𝑤:	

𝑐 = 𝑂(𝑤7) Reingold-Steinke-Vadhan’13	
Read	once	branching	programs	of	width	𝑤:	

𝑐 = logw 𝑛 Chattopadhyay-Hatami-Reingold-Tal’18	
Circuits	of	depth	𝑑:	

𝑐 = logy 𝑠 Tal’17

Construction	of	fractional	PRGs



• One	way	to	view	our	construction	is	as	follows

• Put	the	f-PRGs	as	rows	of	a	𝑡×𝑛matrix

𝑋M

⋮

𝑋T

Questions



• One	way	to	view	our	construction	is	as	follows

• Put	the	f-PRGs	as	rows	of	a	𝑡×𝑛matrix
• Apply	a	“random	walk	gadget”	𝑔 on	each	column:	𝑔: −1,1 T → {−1,1}

𝑋M

⋮

𝑋T

𝒈 𝒈 𝒈

Questions



• One	way	to	view	our	construction	is	as	follows

• Put	the	f-PRGs	as	rows	of	a	𝑡×𝑛matrix
• Apply	a	“random	walk	gadget”	𝑔 on	each	column:	𝑔: −1,1 T → {−1,1}

𝐺 𝑋M, … ,𝑋T = 𝑔 𝑋M,M,… , 𝑋T,M ,… , 𝑔 𝑋M,*,… , 𝑋T,*

𝑋M

⋮

𝑋T

𝒈 𝒈 𝒈

Questions



Questions



• Can	we	use	less	independence?

Questions



• Can	we	use	less	independence?

• If	function	class	ℱ is	“simple”,	can	we	terminate	the	random	walk	earlier?

Questions



• Can	we	use	less	independence?

• If	function	class	ℱ is	“simple”,	can	we	terminate	the	random	walk	earlier?

• Can	we	construct	hitting	sets	this	way?

Questions



• Can	we	use	less	independence?

• If	function	class	ℱ is	“simple”,	can	we	terminate	the	random	walk	earlier?

• Can	we	construct	hitting	sets	this	way?

• Can	we	construct	other	pseudorandom	objects	in	this	way?

Questions



Thank	you!


