Earthmover resilience & testing in ordered structures

Omri Ben-Eliezer
Tel-Aviv University

Eldar Fischer
Technion

Computational Complexity Conference 2018
UCSD, San Diago
Property testing (RS96, GGR98)

Meta problem: Given property P, efficiently distinguish between

- Objects that **satisfy** P
- Objects that are **far from satisfying** P
Definition: An ε-test for a property P is given query access to an unknown graph G on n vertices, and acts as follows.

- G satisfies P: ACCEPT (with prob. $2/3$)
- G is ε-far from P: REJECT (with prob. $2/3$)
- DON'T CARE
Graph property testing

Query = “Is there an edge between u and v?”
(dense graph model)

\[G \text{ satisfies } P \]

ACCEPT (with prob. 2/3)

\[G \text{ is } \varepsilon\text{-far from } P \]

REJECT (with prob. 2/3)

DON’T CARE
Graph property testing

ε-far = need to add/remove εn^2 edges in G to satisfy P. (dense graph model)

G satisfies P

ACCEPT (with prob. 2/3) DON’T CARE REJECT (with prob. 2/3)

G is ε-far from P
Graph property testing

Definition: A property P is **testable** if it has an ε-test making $q(\varepsilon)$ queries for any $\varepsilon > 0$.

Question (GGR98): Which graph properties are testable?
Canonical tests

• An ϵ-test is **canonical** if it queries a random induced subgraph and accepts/rejects only based on queried subgraph.
Canonical tests

• **Theorem** [AFKS00, GT03]:
 \[P \text{ testable} \iff P \text{ canonically testable} \]

Intuition: *Original* test makes \(q \) queries
Canonical test picks random \(2q \) vertices, then “simulates” original test
Tolerant testing [PRR’06]

• Test is \((\delta, \varepsilon)\)-tolerant \((0 \leq \delta < \varepsilon)\) if it acts as follows.
 • Motivation: Noisy input

\[G \text{ satisfies } P \]
\[G \text{ is } \delta \text{–close to } P \]
\[G \text{ is } \varepsilon \text{–far from } P \]

- ACCEPT (with prob. 2/3)
- DON’T CARE
- REJECT (with prob. 2/3)
Tolerant testing [PRR’06]

P is tolerantly testable

∀ε ∃δ : P has a (δ, ε)-test making q(ε) queries.

- G satisfies P
- G is δ-close to P

- G is ε-far from P

ACCEPT (with prob. 2/3)
DON’T CARE
REJECT (with prob. 2/3)
Distance estimation

∀ε ∀δ : P has a (ε − δ, ε)-test making q(δ, ε) queries.

G is (ε − δ)-close to P

ACCEPT (with prob. 2/3)

G is ε-far from P

REJECT (with prob. 2/3)

DON’T CARE
Testing vs tolerant testing vs distance estimation

- **Theorem** [Fischer, Newman ’05]: For graph properties, P canonically testable P estimable

\[
G \text{ satisfies } P \quad \text{ACCEPT} \\
G \text{ is } \varepsilon\text{-far from } P \quad \text{DON'T CARE} \\
G \text{ is } (\varepsilon - \delta)\text{-close to } P \quad \text{ACCEPT} \\
G \text{ is } \varepsilon\text{-far from } P \quad \text{REJECT}
\]
Summary - graph properties

Testability
- G satisfies P → ACCEPT
- G is ε-far from P → REJECT
- DON’T CARE

Canonical Testability
- G satisfies P → ACCEPT
- G is ε-far from P → REJECT
- DON’T CARE

Estimability
- $G (\varepsilon - \delta)$-close to P → ACCEPT
- G is ε-far from P → REJECT
- DON’T CARE

Tolerant Testability
- $G \delta$-close to P → ACCEPT
- G is ε-far from P → REJECT
- DON’T CARE

(GT03) (FN05)
What about ordered structures?

- **Strings** (1D)
- **Images** (2D) AKA ordered matrices
- **Vertex-ordered graphs** (2D) and hypergraphs
- Hypercube (high-D): a different story...
Image property testing

Unknown $n \times n$ image I over fixed set of pixels Σ

Query = “What is the color of pixel in location (i,j)?”
Image property testing

Unknown $n \times n$ image I over fixed set of pixels Σ

ε-far = need to modify εn^2 pixels in I to satisfy P

I satisfies P

ACCEPT (with prob. 2/3)

I is ε-far from P

REJECT (with prob. 2/3)

DON'T CARE
Image property testing

canonical test = pick randomly t rows and t columns, query all pixels in intersection.
String property testing

Query access to unknown **string** of length n over **fixed** alphabet Σ.

canonical test = pick randomly t elements and query them.
What about ordered structures?

Do similar characterizations hold for ordered structures?

• **No**, testability/estimability $\not\Rightarrow$ canonical testability
 • Example: “not containing three consecutive 1-s” in 0/1 strings.

• **No**, testability $\not\Rightarrow$ tolerant testability. [Fischer, Fortnow ‘05]
 • Properties based on codes & PCPPs.

• **Yes**, for “global enough” properties. [This work]
Earthmover resilience (strings)

Flip operation:

Definition: Earthmover distance between strings S and S' is

$$d_e(S, S') = \frac{1}{n^2} \cdot \min\{ \text{number of flips to create } S' \text{ from } S, \infty \}$$

Definition: Property P is earthmover resilient if $\exists \delta: (0,1) \to (0,1)$ s.t.

- String S satisfies P
- String S' satisfies $d_e(S, S') \leq \delta(\varepsilon)$
- String S' is ε-close to P
Earthmover resilience (images)

Flip operation:

Definition: **Earthmover distance** between images I and I' is

$$d_e(I, I) = \frac{1}{n^2} \cdot \min\{ \text{number of flips to create } I' \text{ from } I , \infty \}$$

Definition: Property P is **earthmover resilient** if $\exists \delta: (0,1) \rightarrow (0,1)$ s.t.

- image I satisfies P
- $d_e(I, I') \leq \delta(\varepsilon)$
- Image I' is ε-close to P
Which properties are earthmover resilient?

- All unordered graph properties [trivial]
- All **hereditary** properties of strings, images & ordered graphs [AKNS00, ABF17]
- Global visual properties of images
 - Convexity of the 1’s
 - 1’s form a half plane
 - [This work]: In general, all properties with **sparse boundary** between 1’s and 0’s.
Earthmover resilience vs canonical testing

[This work]:

For string properties P,

P earthmover resilient \iff P canonically testable

For image and ordered graph properties P,

P earthmover resilient + P tolerantly testable \iff P canonically testable
Canonical testing to estimation

[This work]:

For image and ordered graph properties P,

- P canonically testable \Rightarrow P (canonically) estimable

Corollary [ABF17 + This work]:

- P hereditary \Rightarrow P (canonically) estimable
ER properties are similar to graph properties

For earthmover resilient properties of images / ordered graphs:

- Tolerant testability
- Canonical testability
- estimability
Warmup proof: ER\[\rightarrow\] canonical testing in binary strings

ER => **piecewise canonical testing**

- Consider **Interval partition** of string into sufficiently many parts.

 ![Interval partition](image)

 - In each interval, make **sufficiently many random queries** to estimate number of 0’s and 1’s.
 - Due to ER, this gives good estimate for distance to \(P \):

 \[
 Distance(S, P) \approx \min_{S' \in P} VD(S, S')
 \]

Where **VD(S,S')** denotes average **variation distance** between the distributions of 0’s and 1’s in each interval.
Warmup proof: ER\(\rightarrow\) canonical testing in binary strings

piecewise canonical testing => **canonical testing**

- Interval partition can be approximated by
 - Picking sufficiently many random queries.
 - Partitioning them artificially into intervals.

- Consequently, piecewise canonical tests can be simulated by canonical ones.
Bits from the proof: **Szemerédi regularity lemma**

[Szemerédi ‘75]:

Any graph has an equipartition of size $C(\varepsilon)$, so that almost all pairs of parts are ε-regular.

Pair is ε-regular if

$$|d - D| \leq \varepsilon$$

for any pair of subsets of size $\geq \varepsilon N$
Bits from the proof: **canonical testing** --> estimation

• **High level idea - unordered case** [Fischer Newman ‘05]
 • **Step 1**: If P is canonically testable, densities of **small induced subgraphs** among graphs **satisfying P different** from those of graphs **far from P**.

• **Step 2**: **regular partitions** of graphs **satisfying P differ** from graphs **far from P**.
Bits from the proof: **canonical testing** --> **estimation**

- **High level idea - unordered case** [Fischer Newman ‘05]
 - **Step 1**: If P is canonically testable, densities of **small induced subgraphs** among graphs **satisfying P different** from those of graphs **far from P**.

 - **Step 2**: **regular partitions** of graphs **satisfying P differ** from graphs **far from P**.

 - **Step 3**: Estimating which regular partitions a graph has - doable with constant number of queries.

 - **Step 4**: distance of **G** from **P** \(\approx \) min distance of a regular partition for **G** from a regular partition for **P**.
Bits from the proof: **canonical testing** --> **estimation**

- **Our observation**
 - Above scheme essentially works for **multipartite** graphs.

 - Given ordered graph G, take **interval partition** of the vertices, effectively approximating G by a multipartite graph.
Bonus: Regular reducibility

[Alon, Fischer, Newman, Shapira ‘06]:
A graph property P is canonically testable \iff P can be “described” using regular partitions

[This work]:
Same holds for images and ordered graphs.
Towards a limit object?

- Proofs in [ABF’17] and this work rely on interval partitioning.

- A limit object (graphon-like [BCLSSV05; LS08; BCLSV08]) for images and ordered graphs via interval partitioning?
Other open questions

• Testability + earthmover resilience \rightarrow canonical testability?

• **More efficient** conversions from testability to estimability
 • Hereditary properties in graphs
 [Hoppen, Kohayakawa, Lang, Lefmann, Stagni ‘16 + ‘17]

• The landscape of property testing
 • “Global” properties seem easy to test [AFKS’00, FN’01, ABF’17, this work]
 • Local properties are easy to test [BKR’17, B’18+]
 • Algebraic structure makes it hard to test [FF’05, FPS’17]
 • Other general results?