Exponential lower bounds for hom. depth-5 circuits over finite fields

Mrinal Kumar
Rutgers → Harvard

Ramprasad Saptharishi
TIFR, Mumbai

CCC 2017
Riga
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_2^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]

\[= 0 \text{ over } \mathbb{F}_2 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) \]

\[= 2x_21 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]

\[\over \mathbb{F}_2 \]

\[\text{Size} = \text{number of gates} \]
Algebraic Circuits

\[f(x_1, x_2, x_3) \]

\[
\begin{align*}
&= 2x_2^1 + 2x_1x_2^1 + 2x_1x_3^1 + 2x_2x_3^1 \\
&= 0 \quad \text{over } F_2
\end{align*}
\]

Depth
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 = 0 \text{ over } \mathbb{F}_2 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) \]
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_2x_3 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]
Algebraic Circuits

\[f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 \]

\(= 0 \text{ over } \mathbb{F}_2 \)
The Open Problem(s)

NP

\(\text{VP} \neq \text{VNP} \) is simpler to prove than \(\text{P} \neq \text{NP} \).

Ultimate goal: Find an explicit \(n \)-varied degree \(d \) polynomial that requires large arithmetic circuits to compute it.
The Open Problem(s)

\[\text{VP} \subsetneq \text{VNP}, \text{P} \subsetneq \text{NP}. \]

Ultimate goal: Find an explicit \(n \)-variated degree \(d \) polynomial that requires large arithmetic circuits to compute it.
The Open Problem(s)

- VP \neq VNP is simpler to prove than $P \neq NP$.

Ultimate goal: Find an explicit n-variated degree d polynomial that requires large arithmetic circuits to compute it.
VP \neq VNP is simpler to prove than $P \neq NP$.
The Open Problem(s)

VP \neq \text{VNP} is simpler to prove than \text{P} \neq \text{NP}.

Ultimate goal: Find an explicit \(n \)-variate degree \(d \) polynomial that requires large arithmetic circuits to compute it.
Depth Reduction

Theorem ([Agrawal-Vinay + Koiran, Tavenas])

Can be computed by

algebraic circuits

of “small” size

Can be computed by

depth-4 circuits

of “not-too-large” size
Depth Reduction

Theorem ([Agrawal-Vinay + Koiran, Tavenas])

Can be computed by algebraic circuits of $\text{poly}(n, d)$ size

Can be computed by $\Sigma \Pi[\sqrt{d}] \Sigma \Pi[\sqrt{d}]$ circuits of $n^{O(\sqrt{d})}$ size
Depth Reduction

Theorem ([Agrawal-Vinay + Koiran, Tavenas])

<table>
<thead>
<tr>
<th>Can be computed by</th>
<th>Cannot be computed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>algebraic circuits</td>
<td>algebraic circuits</td>
</tr>
<tr>
<td>of poly(n, d) size</td>
<td>of poly(n, d) size</td>
</tr>
</tbody>
</table>

(Or)

- Can be computed by $\Sigma \Pi [\sqrt{d}] \Sigma \Pi [\sqrt{d}]$ circuits
- of $n^{O(\sqrt{d})}$ size

- Cannot be computed by $\Sigma \Pi [\sqrt{d}] \Sigma \Pi [\sqrt{d}]$ circuits
- of $n^{O(\sqrt{d})}$ size
A brief history of related results

Goal: To prove an $n^{\omega(\sqrt{d})}$ lower bound for $\sum \Pi[\sqrt{d}] \sum \Pi[\sqrt{d}]$ circuits.
A brief history of related results

Goal: To prove an \(n^{\omega(\sqrt{d})} \) lower bound for \(\sum \Pi[\sqrt{d}] \sum \Pi[\sqrt{d}] \) circuits.

Theorem ([Nisan-Wigderson])

A \(2^{\Omega(d)} \) lower bound for \(\sum \Pi[d] \sum \) circuits.
A brief history of related results

Goal: To prove an $n^{\omega(\sqrt{d})}$ lower bound for $\Sigma \Pi \Sigma \Pi$ circuits.

Theorem ([Nisan-Wigderson])
A $2^{\Omega(d)}$ lower bound for $\Sigma \Pi \Sigma \Pi$ circuits.

Theorem ([Grigoriev-Karpinski, Grigoriev-Razborov])
A $2^{\Omega_q(d)}$ lower bound $\Sigma \Pi \Sigma \Sigma$ circuits over any fixed finite field \mathbb{F}_q.
A brief history of related results

Goal: To prove an $n^{\omega(\sqrt{d})}$ lower bound for $\sum \pi^d \sum \pi^d$ circuits.

Theorem ([Nisan-Wigderson])
A $2^{\Omega(d)}$ lower bound for $\sum \pi^d \sum$ circuits.

Theorem ([Grigoriev-Karpinski, Grigoriev-Razborov])
A $2^{\Omega_q(d)}$ lower bound $\sum \pi \sigma$ circuits over any fixed finite field \mathbb{F}_q

Theorem ([Gupta-Kamath-Kayal-S])
A $2^{\Omega(\sqrt{d})}$ lower bound for $\sum \pi^d \sum \pi^d$ circuits.
A brief history of related results

Goal: To prove an $n^{\omega(\sqrt{d})}$ lower bound for $\sum \Pi[\sqrt{d}] \sum \Pi[\sqrt{d}]$ circuits.

Theorem ([Nisan-Wigderson])
A $2^{\Omega(d)}$ lower bound for $\sum \Pi[d] \sum$ circuits.

Theorem ([Grigoriev-Karpinski, Grigoriev-Razborov])
A $2^{\Omega_q(d)}$ lower bound for $\sum \Pi \sum$ circuits over any fixed finite field \mathbb{F}_q.

Theorem ([Gupta-Kamath-Kayal-S])
A $2^{\Omega(\sqrt{d})}$ lower bound for $\sum \Pi[\sqrt{d}] \sum \Pi[\sqrt{d}]$ circuits.

Theorem ([Kayal-Limaye-Saha-Srinivasan])
A $n^{\Omega(\sqrt{d})}$ lower bound for homogeneous depth-4 circuits.
Our results

Theorem
An explicit polynomial $f(x_1, \ldots, x_n)$ of degree d with 0/1 coefficients such that, for any fixed finite field \mathbb{F}_q, any homogeneous $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f must have size $2^{\Omega_q(\sqrt{d})}$.

Ingredients for the proof:
- [Kayal-Limaye-Saha-Srinivasan]
- [Grigoriev-Karpinski]
- A good amount of sweat
Our results

Theorem

An explicit polynomial $f(x_1, \ldots, x_n)$ of degree d with 0/1 coefficients such that, for any fixed finite field \mathbb{F}_q, any homogeneous $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f must have size $2^{\Omega_q(\sqrt{d})}$.

Ingredients for the proof:

[Kayal-Limaye-Saha-Srinivasan] + [Grigoriev-Karpinski] + a good amount of sweat
Our results

Theorem

An explicit polynomial \(f(x_1, \ldots, x_n) \) of degree \(d \) with 0/1 coefficients such that, for any fixed finite field \(\mathbb{F}_q \), any homogeneous \(\Sigma \Pi \Sigma \Pi \Sigma \) circuit computing \(f \) must have size \(2^{\Omega_q(\sqrt{d})} \).

Ingredients for the proof:

[Kayal-Limaye-Saha-Srinivasan] + [Grigoriev-Karpinski] + a good amount of sweat

... ought to have been easier than this
How are such bounds proved?

Natural proof strategies

Construct a map $\Gamma : \mathbb{F}[x_1, \ldots, x_n] \to \mathbb{N}$, that assigns a number to every polynomial such that:

1. If f is computable by “small” circuits, then $\Gamma(f)$ is “small”.

2. For the desired polynomial f we wish to show a lower bound, then $\Gamma(f)$ is “large”.
Natural proof strategies

Construct a map $\Gamma : \mathbb{F}[x_1, \ldots, x_n] \to \mathbb{N}$, that assigns a number to every polynomial such that: Typically $\Gamma(f)$ is the rank of some associated linear space.

1. If f is computable by “small” circuits, then $\Gamma(f)$ is “small”.

2. For the desired polynomial f we wish to show a lower bound, then $\Gamma(f)$ is “large”.

How are such bounds proved?
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sums of terms of the form $\ell_1 \cdots \ell_d$.
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sums of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are just $\binom{d}{k}$ linearly independent k-th order partial derivatives of $\ell_1 \cdots \ell_d$.
Examples

[\text{Nisan-Wigderson-95}]: \sum \Pi^d \sum \text{circuits}, \text{sums of terms of the form } \ell_1 \cdots \ell_d.

\textbf{Key observation:} There are just \(\binom{d}{k} \) linearly independent \(k \)-th order partial derivatives of \(\ell_1 \cdots \ell_d \).

For a generic polynomial, you would all partial derivatives to be linearly independent.
Examples

[Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sums of terms of the form
$\ell_1 \cdots \ell_d$.

Key observation: There are just $\binom{d}{k}$ linearly independent k-th order
partial derivatives of $\ell_1 \cdots \ell_d$.
For a generic polynomial, you would all partial derivatives to be
linearly independent.

$$\partial^k (\ell_1 \cdots \ell_d) \subseteq \text{span} \left\{ \prod_{i \in S} \ell_i : S \subseteq [d], |S| = d - k \right\}$$
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sums of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are just $\binom{d}{k}$ linearly independent k-th order partial derivatives of $\ell_1 \cdots \ell_d$.

For a generic polynomial, you would all partial derivatives to be linearly independent.

For $f = \text{Det}_d$, the symbolic determinant of a $d \times d$ matrix, we have $\binom{d}{k}^2$ linearly independent $(d - k) \times (d - k)$ minors.
Examples

[Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sums of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are just $\binom{d}{k}$ linearly independent k-th order partial derivatives of $\ell_1 \cdots \ell_d$.

For a generic polynomial, you would all partial derivatives to be linearly independent.

\[
\partial^k(\ell_1 \cdots \ell_d) \subseteq \text{span} \left\{ \prod_{i \in S} \ell_i : S \subseteq [d], |S| = d-k \right\}
\]

For \(f = \text{Det}_d \), the symbolic determinant of a \(d \times d \) matrix, we have \(\binom{d}{k}^2 \) linearly independent \((d-k) \times (d-k) \) minors.

Therefore, if \(\text{Det}_d = \sum_{i=1}^s \ell_{i1} \cdots \ell_{id} \), then \(s \geq \binom{d}{d/2} \). \(\square \)
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.
Examples

[Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q^{\sqrt{d}}$.
Examples

- [Nisan-Wigderson-95]: $\sum \Pi^d \sum$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

\[
\partial_x (Q_1 \cdots Q_r) = \partial_x (Q_1) \cdot Q_2 \cdots Q_r + \cdots + Q_1 \cdots Q_{r-1} \cdot \partial_x (Q_r)
\]
Examples

▶ [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

▶ [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

\[\partial_x(Q_1 \cdots Q_r) = \partial_x(Q_1) \cdot Q_2 \cdots Q_r + \cdots + Q_1 \cdots Q_{r-1} \cdot \partial_x(Q_r) \]
Examples

- \textbf{[Nisan-Wigderson-95]}: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 \textbf{Key observation}: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- \textbf{[Gupta-Kamath-Kayal-S-13]}: $\Sigma \Pi \sqrt{d} \Sigma \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

\[
\partial_x (Q_1 \cdots Q_r) = \text{span} \left\{ x^{\sqrt{d}} \cdot \prod_{i \in S} Q_i : S \subset [r], |S| = r - 1 \right\}
\]
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

$$\partial^k (Q_1 \cdots Q_r) = \text{span} \left\{ x^{k \sqrt{d}} \cdot \prod_{i \in S} Q_i : S \subset [r], |S| = r - k \right\}$$
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

 $$\partial^{=k}(Q_1 \cdots Q_r) = \text{span} \left\{ x^{=k\sqrt{d}} \cdot \prod_{i \in S} Q_i : S \subset [r], |S| = r - k \right\}$$

 Key observation: Many *low-degree* combinations of partial derivatives are zero if all Q_i's have low degree.
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

 Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

 Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

\[\Gamma(f) = \dim \{ x^=\ell \partial=^k(f) \} \]

Dimension of shifted partial derivatives
Examples

- [Nisan-Wigderson-95]: $\Sigma \Pi^d \Sigma$ circuits, sum of terms of the form $\ell_1 \cdots \ell_d$.

 Key observation: There are “few” linearly independent partial derivatives of $\ell_1 \cdots \ell_d$.

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

![Diagram of a multivariate polynomial with variables x_1, \ldots, x_n and partial derivatives $\partial_{x_1^{\alpha_1} \cdots x_n^{\alpha_n}} f$](image)
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum \prod \sqrt{d} \sum \prod \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_is have low degree.
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum \prod \sqrt{d} \sum \prod \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum \Pi \sqrt{d} \sum \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi^{\sqrt{d}} \Sigma \Pi^{\sqrt{d}}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

| Low degree mons. | High degree mons. |
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum \prod \sqrt{d} \sum \prod \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_{b}$ with total degree d.

```
Low degree mons. ✓ High degree mons.
\sqrt{[GKKS-12]}
```
Examples...

- **[Gupta-Kamath-Kayal-S-13]:** $\Sigma \Pi^\sqrt{d} \Sigma \Pi^\sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

<table>
<thead>
<tr>
<th>Low degree mons.</th>
<th>High degree large support mons.</th>
<th>High degree small support mons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GKKS-12]</td>
<td>Eg. $x_1 \cdots x_d$</td>
<td>Eg. $x_1^{d/2} x_2^{d/2}$</td>
</tr>
</tbody>
</table>
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum \Pi \sqrt{d} \sum \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

<table>
<thead>
<tr>
<th>Low degree mons.</th>
<th>High degree large support mons.</th>
<th>High degree small support mons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{[GKKS-12]}$</td>
<td>Eg. $x_1 \cdots x_d$</td>
<td>Eg. $x_1^{d/2} x_2^{d/2}$</td>
</tr>
</tbody>
</table>

Idea 1 - Random Restrictions: Randomly set a small number of variables to zero.
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi \sqrt{d} \Sigma \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

<table>
<thead>
<tr>
<th>Low degree mons.</th>
<th>High degree large support mons.</th>
<th>High degree small support mons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\sqrt{\text{[GKKS-12]}}]</td>
<td>Eg. $x_1 \cdots x_d$</td>
<td>Eg. $x_1^{d/2} x_2^{d/2}$</td>
</tr>
</tbody>
</table>

- **Idea 1 - Random restrictions:** Randomly set a small number of variables to zero
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\sum_{i=1}^{d} \sum_{j=1}^{d} Q_i \cdot Q_j$ circuits, terms of the form $Q_1 \cdots Q_d$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_i's have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

<table>
<thead>
<tr>
<th>Low degree mons.</th>
<th>High degree large support mons.</th>
<th>High degree small support mons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{\text{[GKKS-12]}}$</td>
<td>Eg. $x_1 \cdots x_d$</td>
<td>Eg. $x_1^{d/2} x_2^{d/2}$</td>
</tr>
</tbody>
</table>

- **Idea 1 - Random restrictions:** Randomly set a small number of variables to zero
- **Idea 2 - Multilinear projection:** Discard all non-multilinear monomials
Examples...

- [Gupta-Kamath-Kayal-S-13]: $\Sigma \Pi \sqrt{d} \Sigma \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

Key observation: Many low-degree combinations of partial derivatives are zero if all Q_is have low degree.

- hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

- **Idea 1 - Random restrictions:** Randomly set a small number of variables to zero
- **Idea 2 - Multilinear projection:** Discard all non-multilinear monomials
Examples...

- **[Gupta-Kamath-Kayal-S-13]**: $\sum \Pi \sqrt{d} \sum \Pi \sqrt{d}$ circuits, terms of the form $Q_1 \cdots Q_{\sqrt{d}}$.

 Key observation: Many *low-degree* combinations of partial derivatives are zero if all Q_i's have low degree.

- **[Kayal-Limaye-Saha-Srinivasan-13]**, **[Kumar-Saraf-13]**: hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

 ![Diagram showing low degree monomials vs. high degree monomials]

 - **Low degree mons.**
 - **High degree large support mons.** (E.g., $x_1 \cdots x_d$)
 - **High degree small support mons.** (E.g., $x_1^{d/2} x_2^{d/2}$)

 - **Idea 1 - Random restrictions**: Randomly set a small number of variables to zero
 - **Idea 2 - Multilinear projection**: Discard all non-multilinear monomials
Examples...

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

- **Idea 1 - Random Restrictions**: Randomly set a small number of variables to zero
- **Idea 2 - Multilinear Projection**: Discard all non-multilinear monomials
Examples...

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
 hom. $\Sigma\Pi\Sigma\Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

- **Idea 1 - Random restrictions**: Randomly set a small number of variables to zero.
- **Idea 2 - Multilinear projection**: Discard all non-multilinear monomials.

\[
\Gamma(f) = \dim(x^{=\ell} \partial^{=k}(f))
\]

Dimension of shifted partials of f.

Examples...

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
 hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

- **Idea 1 - Random restrictions**: Randomly set a small number of variables to zero
- **Idea 2 - Multilinear projection**: Discard all non-multilinear monomials

$$
\Gamma(f) = \dim(x^=\ell \partial^=k(\rho(f)))
$$

Dimension of shifted partials of a random restriction of f.
Examples...

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
 hom. $\Sigma\Pi\Sigma\Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

- **Idea 1 - Random Restrictions**: Randomly set a small number of variables to zero
- **Idea 2 - Multilinear Projection**: Discard all non-multilinear monomials

$$
\Gamma(f) = \dim(\text{mult} \circ x^{\ell} \partial^{k}(\rho(f)))
$$

Dimension of projected shifted partials of a random restriction of f.
Examples...

- [Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]:
 hom. $\Sigma\Pi\Sigma\Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

\[
\Gamma(f) = \dim(\text{mult} \circ x^\ell \partial^k(\rho(f)))
\]

Dimension of projected shifted partials of a random restriction of f.
Examples...

[Kayal-Limaye-Saha-Srinivasan-13], [Kumar-Saraf-13]: hom. $\Sigma \Pi \Sigma \Pi$ circuits: terms like $Q_1 \cdots Q_b$ with total degree d.

\[
\Gamma(f) = \dim(\text{mult} \circ x^\ell \partial^k(\rho(f)))
\]

Dimension of projected shifted partials of a random restriction of f.

Multilinear mons of degree $\ell + d - k$
Handling depth-5 circuits

We already have a complexity measure PSPD for hom. depth-4 circuits. How large is PSPD for a generic depth-5 circuit? Small (a lower bound against depth-5 circuits). Large (separation between depth-5 and depth-4 circuits).... still don't know
Handling depth-5 circuits

We already have a complexity measure Γ_{PSPD} for hom. depth-4 circuits.
Handling depth-5 circuits

We already have a complexity measure Γ_{PSPD} for hom. depth-4 circuits.

How large is Γ_{PSPD} for a generic depth-5 circuit?
Handling depth-5 circuits

We already have a complexity measure Γ_{PSPD} for hom. depth-4 circuits.

How large is Γ_{PSPD} for a generic depth-5 circuit?

Small \Rightarrow a lower bound against depth-5 circuits.
Handling depth-5 circuits

We already have a complexity measure Γ_{PSPD} for hom. depth-4 circuits.

How large is Γ_{PSPD} for a generic depth-5 circuit?

Small \Rightarrow a lower bound against depth-5 circuits.

Large \Rightarrow separation between depth-5 and depth-4 circuits.
Handling depth-5 circuits

We already have a complexity measure Γ_{PSPD} for hom. depth-4 circuits.

How large is Γ_{PSPD} for a *generic depth-5 circuit*?

Small \Rightarrow a lower bound against depth-5 circuits.

Large \Rightarrow separation between depth-5 and depth-4 circuits.

... still don’t know
Evaluating the complexity measure

\[\Gamma_k(f) = \dim \left\{ \partial^k (f) \right\} \]
Evaluating the complexity measure

\[\partial = k \]

Monomials of degree \(d - k \)

\[\partial_{x^\alpha} \]

coeff. of \(m \)
in \(\partial_{x^\alpha}(f) \)
Evaluating the complexity measure

\[\partial = k \]

Monomials of degree \(d - k \)

\[\partial_{x^\alpha} \]

Coeff. of \(m \) in \(\partial_{x^\alpha}(f) \)

Points in \(\mathbb{F}_q^n \)

\[\partial = k \]

eval. of \(\partial_{x^\alpha}(\rho(f)) \) at \(\bar{a} \)
Evaluating the complexity measure

Monomials of degree $d - k$

Eval. of $\partial_x^\alpha (\rho(f))$ at \bar{a}

Small rank
\[f = \ell_{11} \cdots \ell_{1d_1} + \cdots + \ell_{s1} \cdots \ell_{sd_s} \]
Grigoriev-Karpinski

\[f = \ell_1 \cdots \ell_{d_1} + \cdots + \ell_s \cdots \ell_{d_s} \]

Low degree terms.

High degree terms.
Grigoriev-Karpinski

\[f = \ell_{11} \cdots \ell_{1d_1} + \cdots + \ell_{s1} \cdots \ell_{sd_s} \]

- **Low degree terms.**
- **High degree terms:** high rank terms
- **High degree terms:** low rank terms

Eg. \(\ell_1^{d/3} \ell_2^{d/3} (\ell_1 + 3\ell_2)^{d/3} \)
Grigoriev-Karpinski

\[f = \ell_1 \cdots \ell_{1d_1} + \cdots + \ell_{s1} \cdots \ell_{sd_s} \]

Low degree terms. \[\text{High degree high rank terms} \]

High degree low rank terms

Eg. \(\ell_1^{d/3} \ell_2^{d/3} (\ell_1 + 3\ell_2)^{d/3} \)
Grigoriev-Karpinski

\[f = \ell_1 \cdots \ell_{d_1} + \cdots + \ell_{s_1} \cdots \ell_{s_{d_s}} \]

- Low degree terms.
- High degree high rank terms
- High degree low rank terms

Eg. \[\ell_1^{d/3} \ell_2^{d/3} (\ell_1 + 3\ell_2)^{d/3} \]

[GW-95]
Grigoriev-Karpinski

\[f = \ell_{11} \cdots \ell_{1d_1} + \cdots + \ell_{s1} \cdots \ell_{sd_s} \]

Low degree terms.

\[\sqrt{[NW-95]} \]

High degree terms.

High degree high rank terms

Eg. \(\ell_1^{d/3} \ell_2^{d/3} (\ell_1 + 3\ell_2)^{d/3} \)

\[\sqrt{[NW-95]} \]

High degree low rank terms

Observation

If \(\dim \{ \ell_1, \cdots, \ell_r \} \) is large, then almost all evaluations of it on \(\mathbb{F}_q^m \) are zero.
Grigoriev-Karpinski

\[f = \ell_{11} \cdots \ell_{1d_1} + \cdots + \ell_{s1} \cdots \ell_{sd_s} \]

Low degree terms.

High degree high rank terms

High degree low rank terms

Eg. \(\ell_1^{d/3} \ell_2^{d/3} (\ell_1 + 3\ell_2)^{d/3} \)

Observation

If \(\dim \{ \ell_1, \cdots, \ell_r \} \) is large, then almost all evaluations of it on \(\mathbb{F}_q^n \) are zero.
Grigoriev-Karpinski

\[\partial = k \]

Mons. of degree \(d - k \)

\[\partial_x^\alpha \]

coeff. of \(m \) in \(\partial_x^\alpha(f) \)
\[\partial = k \]

\[\bar{a} \]

\[\partial_{\alpha} \]

\[\text{eval. of } \partial_{\alpha}(f) \text{ at } \bar{a} \]

\[\mathbb{F}^n_q \]
\[\partial = k \]

\[\partial_{x^\alpha} \]

Eval. of \(\partial_{x^\alpha}(f) \) at \(\tilde{a} \)

\[\mathbb{F}^n_q \]
Lemma

If f is computable by a small $\Sigma \Pi \Sigma$ circuit over \mathbb{F}_q, then there the above matrix has small rank when a certain small set of columns are removed.
Lemma
If f is computable by a small $\Sigma \Pi \Sigma$ circuit over \mathbb{F}_q, then there the above matrix has small rank when a certain small set of columns are removed.

Lemma
For Det_n or Perm_n the above matrix remains full rank, as long as we removed only few columns.
Lifting to depth five

ΣΠΣΠΣ

Types of products of linear polynomials:

- Low degree products.
- High degree products.
Lifting to depth five

ΣΠΣΠΣ

Types of products of linear polynomials:

Low degree products.

High degree products.

[GKKS]
Lifting to depth five

Types of products of linear polynomials:

<table>
<thead>
<tr>
<th>Low degree products.</th>
<th>High degree, large rank products.</th>
<th>High degree, small rank products.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ [GKKS]</td>
<td>Eg. $\ell_1 \cdots \ell_d$</td>
<td>Eg. $\ell_1^{d/2} \ell_2^{d/2}$</td>
</tr>
</tbody>
</table>
Lifting to depth five

$\Sigma \Pi \Sigma \Pi \Sigma$

Types of products of linear polynomials:

- **Low degree products.**
 - \checkmark [GKKS]

- **High degree, large rank products.**
 - Eg. $\ell_1 \cdots \ell_d$

- **High degree, small rank products.**
 - Eg. $\ell_{1}^{d/2} \ell_{2}^{d/2} \checkmark$
Lifting to depth five

σπσπσ

Types of products of linear polynomials:

<table>
<thead>
<tr>
<th>Low degree products.</th>
<th>High degree, large rank products.</th>
<th>High degree, small rank products.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[[GKKS]]</td>
<td>Eg. (l_1 \cdots l_d)</td>
<td>Eg. (l_1^{d/2} l_2^{d/2})</td>
</tr>
</tbody>
</table>

Observation

If \(\text{dim} \{ l_1, \cdots, l_r \} \) is large, then almost all evaluations of it on \(\mathbb{F}_q^m \) are zero.
Lifting to depth five

\[\Sigma \Pi \Sigma \Pi \Sigma\]

Types of products of linear polynomials:

- Low degree products.
 - \([\text{GKKS}]\]
 - Eg. \(\ell_1 \cdots \ell_d\)
 - \(\sqrt{[\ell_1] \cdots [\ell_d]}\)

- High degree, large rank products.
 - Eg. \(\ell_1 \cdots \ell_d\)

- High degree, small rank products.
 - Eg. \(\ell_1^{d/2} \ell_2^{d/2}\)

Observation

If \(\dim \{\ell_1, \cdots, \ell_r\}\) is large, then almost all evaluations of it on \(\mathbb{F}_q^n\) are zero.
We know this rank is large:

\[x = \ell \partial = k \]

\[m \]

\[x^\beta \partial_{x^\alpha} \]

Coeff. of \(m \) in \(x^\beta \partial_{x^\alpha}(f) \)

Mons of degree \(\ell + d - k \)
We know this rank is large:

\[m \]

\[x^\ell \partial = k \]

Mons of degree \(\ell + d - k \)

Need to show this rank is large:

\[x^\ell \partial = k \]

\[\{0, 1\}^n \]

coeff. of \(m \) in \(x^\beta \partial_{x^\alpha}(f) \)

eval. of \(x^\beta \partial_{x^\alpha}(f) \) at \(a \)
Switching to the evaluation perspective

\[x^\beta \partial_{x^\alpha} = \begin{cases}
 x^\ell \partial^k
 & \text{eval. of } x^\beta \partial_{x^\alpha}(f) \text{ at } a \\
 \mathbb{F}^n_q &
\end{cases} \]

Mons of degree \(\ell + d - k \)
Switching to the evaluation perspective

Monsof degree $\ell + d - k$

Largerank $\therefore [KLSS, KS]$

$x^\beta \partial_{x^\alpha}$

$Vandermonde$

$= x = \ell \partial = k$

\mathbb{F}^n_q

Eval. of $x^\beta \partial_{x^\alpha}(f)$ at a
Switching to the evaluation perspective

\[x^\beta \partial_{x^\alpha} \]

Mons of degree \(\ell + d - k \)

Large rank \(\therefore \) Vandermonde

\[= x=\ell \partial=k \]

eval. of \(x^\beta \partial_{x^\alpha}(f) \) at \(a \)

\[\mathbb{F}^n_{q} \]
Switching to the evaluation perspective

\[x^\beta \partial_{x^\alpha} \]

Mons of degree \(\ell + d - k \)

\[= \quad x^{=\ell} \partial^{=k} \]

\[\mathbb{F}^n_q \]

Large rank \(\vdash [KLSS, KS] \)

\[\mathbb{F}^n_q \]

Large rank \(\vdash \) Vandermonde

\[x^\beta \partial_{x^\alpha} \]

eval. of \(x^\beta \partial_{x^\alpha}(f) \) at \(a \)
Issues to be resolved

Issue 1: If Fatmatrix and Tallmatrix could both be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on $f_0, 1, g_{\text{full}}$.

Issue 2: But then $(x_1 + 1, x_n + 1)$, over F_3, is never zero over $f_0, 1, g_{\text{full}}$.

Fix: Ok fine. Work with $\overline{c} + f_0, 1, g_{\text{full}}$ for some random $\overline{c}_{2 \times F_n}$.

Issue 3: Even with $\overline{c} + f_0, 1, g_{\text{full}}$ the matrix is still slightly fat and the Vandermonde is slightly tall.

Fix: Prove a really good rank lower bound on the left matrix. (Barely manage to work for a specific explicit polynomial. Phew!)
Issues to be resolved

Issue 1: [Fat matrix] × [Tall matrix] could be zero, even if both are full rank.
Issues to be resolved

Issue 1: [Fat matrix] × [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).
Issues to be resolved

Issue 1: [Fat matrix] \(\times \) [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).

Issue 2: But then \((x_1 + 1) \cdots (x_n + 1)\), over \(\mathbb{F}_3\), is *never* zero over \(\{0, 1\}^n\).
Issues to be resolved

Issue 1: [Fat matrix] × [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).

Issue 2: But then \((x_1 + 1) \cdots (x_n + 1)\), over \(\mathbb{F}_3 \), is *never* zero over \(\{0, 1\}^n \).

Fix: Ok fine. Work with \(\tilde{c} + \{0, 1\}^n \) for some random \(\tilde{c} \in \mathbb{F}_q^n \).
Issues to be resolved

Issue 1: [Fat matrix] \(\times \) [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).

Issue 2: But then \((x_1 + 1) \cdots (x_n + 1)\), over \(\mathbb{F}_3 \), is never zero over \(\{0, 1\}^n \).

Fix: Ok fine. Work with \(\tilde{c} + \{0, 1\}^n \) for some random \(\tilde{c} \in \mathbb{F}_q^n \).

Issue 3: Even with \(\tilde{c} + \{0, 1\}^n \) the matrix is still slightly fat and the Vandermonde is slightly tall.
Issues to be resolved

Issue 1: [Fat matrix] × [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).

Issue 2: But then \((x_1 + 1) \cdots (x_n + 1)\), over \(\mathbb{F}_3\), is never zero over \(\{0, 1\}^n\).

Fix: Ok fine. Work with \(\tilde{c} + \{0, 1\}^n\) for some random \(\tilde{c} \in \mathbb{F}_q^n\).

Issue 3: Even with \(\tilde{c} + \{0, 1\}^n\) the matrix is still slightly fat and the Vandermonde is slightly tall.

Fix: Prove a really good rank lower bound on the left matrix.
Issues to be resolved

Issue 1: [Fat matrix] × [Tall matrix] could be zero, even if both are full rank.

Fix: Make the matrix slimmer by only considering evaluations on \(\{0, 1\}^n \).

Issue 2: But then \((x_1 + 1) \cdots (x_n + 1)\), over \(\mathbb{F}_3 \), is never zero over \(\{0, 1\}^n \).

Fix: Ok fine. Work with \(\bar{c} + \{0, 1\}^n \) for some random \(\bar{c} \in \mathbb{F}_q^n \).

Issue 3: Even with \(\bar{c} + \{0, 1\}^n \) the matrix is still slightly fat and the Vandermonde is slightly tall.

Fix: Prove a really good rank lower bound on the left matrix. (Barely manages to work for a specific explicit polynomial. Phew!)
Summary

Theorem

There is a polynomial $f \in VNP$ such that, for every finite field \mathbb{F}_q, any hom. $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f over \mathbb{F}_q must have size $\exp(\Omega_q(\sqrt{d}))$.

Remarks and open problems:

Delicate analysis.

▶ The proof ought to work for IMM also but we don’t have a tight enough analysis (yet).

▶ After this, [Kumar-S] did manage to separate depth-4 and depth-5 in the low-degree regime, but via a different complexity measure.

▶ Other fields?
Summary

Theorem
There is a polynomial $f \in \text{VNP}$ such that, for every finite field \mathbb{F}_q, any hom. $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f over \mathbb{F}_q must have size $\exp(\Omega_q(\sqrt{d}))$.

Remarks and open problems:
Summary

Theorem
There is a polynomial $f \in \text{VNP}$ such that, for every finite field \mathbb{F}_q, any hom. $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f over \mathbb{F}_q must have size $\exp(\Omega_q(\sqrt{d}))$.

Remarks and open problems:
- The proof ought to work for IMM also but we don’t have a tight enough analysis (yet).
Summary

Theorem

There is a polynomial \(f \in \text{VNP} \) such that, for every finite field \(\mathbb{F}_q \), any hom. \(\Sigma^1\Pi^1\Pi^1\Sigma \) circuit computing \(f \) over \(\mathbb{F}_q \) must have size \(\exp(\Omega_q(\sqrt{d})) \).

Remarks and open problems:

▶ The proof ought to work for IMM also but we don’t have a tight enough analysis (yet).

▶ After this, [Kumar-S] did manage to separate depth-4 and depth-5 in the low-degree regime, but via a different complexity measure.
Summary

Theorem
There is a polynomial $f \in \text{VNP}$ such that, for every finite field \mathbb{F}_q, any hom. $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f over \mathbb{F}_q must have size $\exp(\Omega_q(\sqrt{d}))$.

Remarks and open problems:

- The proof ought to work for IMM also but we don’t have a tight enough analysis (yet).
- After this, [Kumar-S] *did* manage to separate depth-4 and depth-5 in the low-degree regime, but via a different complexity measure.
- Other fields?
Summary

Theorem
There is a polynomial $f \in \text{VNP}$ such that, for every finite field \mathbb{F}_q, any hom. $\Sigma \Pi \Sigma \Pi \Sigma$ circuit computing f over \mathbb{F}_q must have size $\exp(\Omega_q(\sqrt{d}))$.

Remarks and open problems:
- The proof ought to work for IMM also but we don’t have a tight enough analysis (yet).
- After this, [Kumar-S] did manage to separate depth-4 and depth-5 in the low-degree regime, but via a different complexity measure.
- Other fields?

\end{document}
References

- [Agrawal-Vinay]:
 "Arithmetic Circuits: A Chasm at Depth Four"
 Foundations of Computer Science, 2008

- [Koiran]:
 "Arithmetic circuits: The chasm at depth four gets wider"
 Theoretical Computer Science, 2012

- [Tavenas]:
 "Improved bounds for reduction to depth 4 and depth 3"
 Information and Computation, 2015

- [Nisan-Wigderson]:
 "Lower Bounds on Arithmetic Circuits Via Partial Derivatives"
 Computational Complexity, 1997
References

References
