Reconstruction of full rank algebraic branching programs

Vineet Nair

Joint work with: Neeraj Kayal, Chandan Saha, Sebastien Tavenas
Arithmetic circuits

\[f(x) \]

Input Variables: \(x_1, x_2, \ldots, x_n \)
Reconstruction problem

➢ \(f(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}] \) is an \(m \)-variate degree \(d \) polynomial computable by a size \(s \) circuit in circuit class \(C \).

➢ Input:

\[\alpha \in \mathbb{F}^m \quad \text{Blackbox access} \quad f(\alpha) \]
Reconstruction problem

➢ Input:

\[\alpha \in \mathbb{F}_m \]

➢ Output: A small arithmetic circuit computing \(f \).

➢ The algorithm should run in time \(\text{poly}(m, s, d, b) \) where \(b \) is the bit length of the coefficients of \(f \).
Polynomial identity testing (PIT):

- **Input:**

 $\alpha \in F^m \rightarrow f(\alpha)$

 Is $f(x) = 0$?

- Randomized algorithm for PIT follows easily from Schwartz-Zippel lemma

- Unlike PIT no efficient randomized algorithm is known for reconstruction.
Previous works

- Over finite fields [Shp07],[KS09] gave quasi-poly time deterministic reconstruction algorithm for depth three circuits with constant number of product gates.
Previous works

- Over characteristic zero fields [Sinha16] gave a poly time randomized algorithm for depth three circuits with two product gates.

- [GKL12] gave poly time randomized algorithm for multilinear depth four circuits with two top-level product gates.
Previous works

- [SV09], [MV16] gave deterministic poly time reconstruction for read-once formulas

- [KS03], [FS13] gave deterministic quasi-poly time reconstruction for ROABPs, set-multilinear ABPs and non-commutative ABPs
Average-case reconstruction

- Progress in reconstruction is slow.
- Can we do reconstruction for most circuits in a circuit class C?
Average-case reconstruction

- Problem definition: The input f is an m variate degree d polynomial picked according to a distribution D on circuit class C.

- Output an efficient reconstruction algorithm for f.

- [GKL11], [GKQ13] gave randomized poly time algorithm for average-case reconstruction of multilinear formulas and formulas.
Algebraic branching programs (ABP)

- **Definition:** Consider the product of d matrices as $X_1 \cdot X_2 \cdot \ldots \cdot X_d$, where X_1 is a row vector of length w, X_d is a column vector of length w and X_2, \ldots, X_{d-1} are $w \times w$ matrices.

- Each entry of X_i, $i \in [d]$ is an affine form in x variables. $|X| = m$, example $a_0 + a_1x_1 + \ldots + a_m$.

- Polynomial computed by the ABP is the entry in the 1×1 matrix computed as above. **Length** and **width** of the ABP is w and d respectively.
Distribution on ABPs

- **Random ABP:** Fix w, d and m. Pick the constants of the linear forms independently and uniformly at random from a large set $S \subseteq \mathbb{Q}$.

- **Average-case reconstruction:** Design a reconstruction algorithm for random(m,w,d,S) ABP.
Average-case reconstruction for ABPs

- **Input:** Blackbox access to \(f(x) \) computable by \(\text{random}(m,w,d,S) \) ABP.

- **Output:** A small ABP computing \(f \) with high probability.

- The algorithm should run in time \(\text{poly}(m,w,d,\rho) \) - (\(\rho \) bit length of an element in \(S \)).
Pseudo-random family

- A distribution D on m variate degree d polynomial family with seed length $s=(md)^{O(1)}$ generates a pseudo-random family if

 - Every algorithm that distinguishes a polynomial coming from D and uniformly random m-variate polynomial with a non-negligible bias runs in time exponential in s.
Candidate family

- [Aar08] conjectures the family $\text{Det}_n(Ax)$ where every entry of $A \in F^{t \times m}$ is chosen uniformly at random from a finite field and $m << t=n^2$ is pseudo-random

Example

<table>
<thead>
<tr>
<th>$x_1 + x_2$</th>
<th>$6x_1 + x_2$</th>
<th>$x_1 + 3x_2$</th>
<th>$5x_1 + 4x_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8x_1 + x_2$</td>
<td>$10x_1 + x_2$</td>
<td>$8x_1 + 3x_2$</td>
<td>$3x_1 + 2x_2$</td>
</tr>
<tr>
<td>$8x_1 + 2x_2$</td>
<td>$5x_1 + 4x_2$</td>
<td>$7x_1 + 9x_2$</td>
<td>$11x_1 + x_2$</td>
</tr>
<tr>
<td>$4x_1 + 3x_2$</td>
<td>$9x_1 + 3x_2$</td>
<td>$5x_1 + 6x_2$</td>
<td>$9x_1 + 7x_2$</td>
</tr>
</tbody>
</table>

$m = 2$, $n = 4$
Iterated matrix multiplication

- **Definition:** Consider the product of d matrices as $X_1 \cdot X_2 \cdot \ldots \cdot X_d$, where X_1 is a **row** vector of length w, X_d is a **column** vector of length w and X_2, \ldots, X_{d-1} are wxw matrices.

- Each entry of X_i, $i \in [d]$ is a **distinct** variable. The variables are **disjoint** across matrices.

- $\text{IMM}_{w,d}$ is the entry in 1×1 matrix computed as above.
Consequence

- Det_n and IMM_{w,d} are affine projections of each other [Mahajan, Vinay 97].

- Hence, it makes sense to ask whether IMM_{w,d}(AX) where A ∈ F^{t \times m} is chosen uniformly at random from a finite S ⊆ Q and m << t = w^2(d-2) + 2w is pseudorandom.
Our Contribution
Main result

- **Main theorem:** An efficient average-case reconstruction algorithm for \(f(x) \in \mathbb{Q}[x] \) computed by \(\text{random}(m,w,d,S) \) ABP where \(m \geq w^2d \).

- The algorithm returns an ABP computing \(f(x) \) with probability \(1 - \frac{1}{\text{poly}(w,d)} \).

- Running time is \(\text{poly}(m,w,d,b) \) where (\(b \) is the bit length of the coefficients of \(f \)).
Remarks

- Does not resolve Aaronson’s conjecture

- For $\text{IMM}_{w,d}$ the conjecture holds when $m \ll w^2d$

- Our result holds when $m \geq w^2d$

- Our result works even if the matrices are not of uniform width.
Full rank ABPs

- If $m \geq w^2d$ then the affine forms in the ABP are \mathbb{Q}-linearly independent with high probability.

- Full rank ABPs: the set of linear forms in X_1, X_2, \ldots, X_d are \mathbb{Q}-linearly independent.

- Example:

 $\begin{bmatrix}
 x_1 + x_2 & x_2 + x_3 & x_3 + x_4 \\
 x_4 + x_5 & x_5 + x_6 & x_6 + x_7 \\
 x_7 + x_8 & x_8 + x_9 & x_9 + x_{10} \\
 x_{10} + x_{11} & x_{11} + x_{12} & x_{12} + x_{13} \\
 & & x_{13} + x_{14} \\
 & & x_{14} + x_{15} \\
 & & x_{15} + x_{16}
 \end{bmatrix}$
Full rank ABPs

- If $m \geq w^2d$ then the affine forms in the ABP are Q-linearly independent with high probability.

- Full rank ABPs: the set of linear forms in X_1, X_2, \ldots, X_d are Q-linearly independent.

- Main result: We design an efficient randomized algorithm to reconstruct full rank ABPs.
Equivalent polynomials

- An n-variate polynomial f is equivalent to an n-variate polynomial g if there exists an invertible $A \in F^{nxn}$ such that $f(x) = g(Ax)$

Equivalence test:

Is there an invertible A in F^{nxn} such that $f(x) = g(Ax)$
Equivalent polynomials

- Equivalence test:

\[
\text{IMM}(\mathbf{x}) \quad \text{f}(\mathbf{x})
\]

Is there an invertible \(A \) in \(F^{nxn} \) such that
\[
f(\mathbf{x}) = \text{IMM}(A\mathbf{x})
\]

Remark: Computing a full rank ABP for \(f \) is the same as designing an efficient randomized equivalence test for IMM.
Group of symmetries of IMM

- **Group of symmetries:** For an n variate polynomial $g(x)$ it is the set of all invertible $A \in \mathbb{F}^{n \times n}$ such that $g(Ax) = g(x)$.

- **Characterization by symmetries:** $g(x)$ is characterized by its group of symmetries then
 - The group of symmetries of $f(x)$ and $g(x)$ are equal if and only if $f(x)$ is a constant multiple of $g(x)$

- **Main theorem 2:** $\text{IMM}_{w,d}$ is characterized by its group of symmetries.
Proof Ideas
Template of the reconstruction algorithm

Assume the input polynomial f is computable by a full rank ABP

Compute a full rank ABP
1. Find the layer spaces
2. Glue them together

Do a polynomial identity test to check if the polynomial computed by the ABP is f

Output `f is not computable by a full rank ABP’

Output the full rank ABP computing f
Pre-processing

- Let an m variate polynomial f be computed by a width w and length d full rank ABP.
 - The number of edges is $n = w^2(d-2) + 2w$

- Two steps of pre-processing:
 - Variable reduction: At the end of this step we get an n variate f computable by a full rank ABP
 - Translation equivalence test: The entries in the matrices of the full rank ABP computing f are linear forms (constant term is 0).
Multiple full rank ABPs for f

- Suppose f is computable by a full rank ABP

\[X_1 \cdot X_2 \cdot \ldots \cdot X_d \]

- Then this full rank ABP for f is not unique

- The following transformations still compute f
 - Transposition
 - Left-right multiplication
 - Corner translations
Transposition

- Recall X_1 and X_d are row and column vectors.

- Since the eventual product is a 1×1 matrix, the transpose of the product still computes f.

- Hence, f is also computed by:

$$\mathsf{T}X_d \bullet \mathsf{T}X_2 \bullet \ldots \bullet \mathsf{T}X_1$$
Let A be a wxw invertible matrix with entries from Q.

- Replace X_2 with $X'_2 = X_2 \cdot A$ and $X'_3 = A^{-1} \cdot X_3$.

- f is computed by the product

$$X_1 \cdot X'_2 \cdot X'_3 \cdot \ldots \cdot X_d$$
Corner translations

- Let B be an anti-symmetric $w \times w$ matrix, then

\[X_1 \cdot B \cdot X_1^T = 0 \]
Let B_1, B_2, \ldots, B_w be anti-symmetric wxw matrices.

Let Y be the matrix such that the i-th column of Y is $B_i \cdot ^TX_1$
Corner translations

- Replace X_2 with $X'_2 = X_2 + Y$

- Observe that $X_1 \cdot X'_2 = X_1 \cdot X_2$ as $X_1 Y = 0_{wxw}$

- f is computed by the product

\[X_1 \cdot X'_2 \cdot X_3 \cdot \ldots \cdot X_d = X_1 \cdot (X_2 + Y) \cdot X_3 \cdot \ldots \cdot X_d \]

- Similarly we can define corner translations for X_{d-1}
Uniqueness of the layer spaces

- Suppose f is computable by a full rank ABP

$$X_1 \cdot X_2 \cdot \ldots \cdot X_d$$

- Let X_i denote the \mathbb{Q}-linear space spanned by the linear forms in X_i

- $X_{1,2}$ and $X_{d-1,d}$ denote the \mathbb{Q}-linear space spanned by the linear forms in X_1, X_2 and X_{d-1}, X_d respectively
Uniqueness of the layer spaces

If \(X'_1 \cdot X'_2 \cdot \ldots \cdot X'_d \) computes \(f \) then

either

\[
X'_i = X_i \quad \text{for} \quad i \in [d] \setminus \{2, d-1\}
\]

\[
X'_{1,2} = X_{1,2} \quad \text{and} \quad X'_{d-1,d} = X_{d-1,d}
\]

or

\[
X'_i = X_{d-i} \quad \text{for} \quad i \in [d] \setminus \{2, d-1\}
\]

\[
X'_{1,2} = X_{d-1,d} \quad \text{and} \quad X'_{d-1,d} = X_{1,2}
\]
Uniqueness of the layer spaces

\[\chi_1, \chi_3, \chi_4, \ldots, \chi_{d-2}, \chi_d \]

\[\chi_{1,2}, \chi_{d-1,d} \]
Uniqueness of the layer spaces

$\chi_d \quad \chi_{d-2} \quad \chi_{d-3} \quad \ldots \quad \chi_3 \quad \chi_1$

$\chi_{d-1,d} \quad \chi_{1,2}$
Group of symmetries of IMM

- The set of all invertible $A \in F^{n \times n}$ such that $\text{IMM}_{w,d}(Ax) = \text{IMM}_{w,d}$.

- We show that the group of symmetries are generated by the following subgroups:
 - T denotes the group corresponding to transpositions
 - M denotes the group corresponding to left-right multiplications
 - C denotes the group corresponding to corner translations
Group of symmetries of IMM

Main Theorem:

\[G_{\text{IMM}} = C \rtimes H, \text{ where } H = M \rtimes T \]

- \(C \) is a normal subgroup in \(G_{\text{IMM}} \) and \(M \) is a normal subgroup in \(H \)

- We also show that IMM is characterized by its group of symmetries

- That is any polynomial with the same symmetry group is a constant multiple of IMM
Computing the full rank ABP: Step 1

- Computing the layer spaces:
 - Study the Lie algebra of the group of symmetries of \(\text{IMM}_{w,d} \)

- [Kay12] Lie algebra of the group of symmetries of \(f \) is the set of matrices
 \[A = (a_{i,j}) \quad i,j \in [n] \]

\[\sum_{i,j \in [n]} x_j \frac{\partial f}{\partial x_i} = 0 \]

- We just use the vector space property of the algebra
Invariant spaces

- **Invariant space:** Let $M: \mathbb{Q}^n \to \mathbb{Q}^n$ be a linear operator. $U \subseteq \mathbb{Q}^n$ is an invariant space if $M(U) \subseteq U$

- The definition can be extended to a set of linear operators $\{M_1, M_2, \ldots, M_n\}$

- The layer spaces of an f computed by a full rank ABP are intimately connected to the invariant spaces of Lie algebra of f
Computing the layer spaces

- Compute a basis of the Lie algebra of f
- Compute the irreducible invariant spaces of the Lie algebra of f
- Compute the layer spaces from the irreducible invariant spaces

- Easy: involves solving a set of linear dependencies
- Since f and IMM are equivalent their Lie algebras are conjugates of each other
- We show that the layer spaces are in fact the irreducible invariant spaces in some sense
Computing the full rank ABP: Step 2

- Ordering the layer spaces: We use evaluation dimension to order the layer spaces.

- Definition:
 - Evaluation Dimension for a polynomial $H(\mathbf{x})$ is defined with respect to a set of variables $S \subseteq \mathbf{x}$
 - $\text{Evaldim}_S[H(\mathbf{x})]$ is equal to

 $$\dim(\text{span}\{H(\mathbf{x}) \mid x_j = a_j \text{ for } x_j \in S, \text{ where } a_j \in F\})$$
Ordering the layer spaces

- We make the variables in distinct layers are disjoint by mapping the basis vectors of the layer spaces to distinct variables.

- Then we find the ordering inductively.
Ordering the layer spaces

- **Base Case**

 Evaluation dimension = \(w \)

 ![Diagram showing evaluation dimension equals \(w \) with dots and a shaded area]

 Evaluation dimension = \(w^2 \)

 ![Diagram showing evaluation dimension equals \(w^2 \) with dots and a shaded area]
Ordering the layer spaces

- Inductive Step

 Evaluation dimension = \(w \)

 \[\cdots \cdots \cdots \]

 Evaluation dimension = \(w^2 \)

 \[\cdots \cdots \cdots \]
Thank You