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History and Motivation

Stefan Dantchev [unpublished]

Buss, Ko lodziejczyk, Thapen [2014]

I Separations of fragments of Bounded Arithmetic

I The first randomized version of a proof system

I Developing lower bound methods

I Understanding what can be proved from random tautologies
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Question. Random 3-DNFs (of sufficient density)

1. are tautologies,

2. can be easily generated, and

3. seem to be hard for every proof system (for not too high density).

But can we derive from them any useful tautology?

Corollary (of our results)
With high probability for a random 3-DNF Φ (of sufficient density), there
is no bounded depth Frege proof of Φ→ PHP of subexponential size.
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Overview

1. equivalent definitions

2. upper bounds

3. lower bounds

4. generalization to bounded depth Frege proofs

5. problems
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Definitions

Definition
An ε-random resolution distribution, or ε-RR distribution, of F is a
probability distribution ∆ on pairs (Bi ,Πi )i∼∆ such that

1. for each i ∈ ∆, Bi is a CNF in variables x1, . . . , xn and Πi is a
resolution refutation of F ∧ Bi

2. for every α ∈ {0, 1}n, Pri∼∆[Bi is satisfied by α] ≥ 1− ε.

The size and the width of ∆ are defined respectively as the maximum
size and maximum width of the refutations Πi (if these maxima exist).
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I RR is sound as a refutational system, in the sense that if F has an
ε-RR distribution then F is unsatisfiable.

Proof: consider any assignment α ∈ {0, 1}n. Since ε < 1, there is at
least one pair (Bi ,Πi ) such that α satisfies Bi and Πi is a resolution
refutation of F ∧ Bi . So α cannot also satisfy F , by the soundness
of resolution.

I RR is complete, since resolution is complete.

I RR is not a propositional proof system in the sense of Cook and
Reckhow because it is defined by a semantic condition.

I The error ε can be reduced with only moderate increase of the
proofs, so we can w.l.o.g. assume ε = 1/2.
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Definition
Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-random
resolution refutation, or (ε,∆)-RR refutation, of F is a pair (B,Π) such
that

1. B is a CNF in variables x1, . . . , xn and Π is a resolution refutation of
F ∧ B

2. Prα∼∆[B[α] = 1] ≥ 1− ε.

If an (ε,∆)-RR refutation exists for all distributions ∆, then this is
equivalent to the existence of an ε-RR distribution.
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Let P be a class of resolution refutations, e.g., refutations of width w
and size s for some w and s.

Proposition
The following are equivalent.

1. F has an ε-RR distribution of refutations from P.

2. F has an (ε,∆)-RR refutation from P for every distribution ∆ on
{0, 1}n.
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Proof.
Consider a zero-sum game between two players, Prover and Adversary:

I Prover picks a pair (B,Π) such that Π ∈ P, B is a CNF, and Π is a
refutation of F ∧ B,

I Adversary picks an assignment α.

The payoff is B[α], i.e., Prover gets 1 if α satisfies B and 0 otherwise.

Then

I definition 1 says: Prover has a mixed strategy to achieve a payoff of
at least 1− ε, and

I definition 2 says: Adversary does not have a mixed strategy to
achieve a payoff less than 1− ε.

By the minimax theorem these statements are equivalent.
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Definition
Let A ⊆ {0, 1}n be a nonempty set of truth assignments. We say that a
formula C is a semantic consequence over A of formulas C1, . . . ,Cr , if
every assignment in A that satisfies C1, . . . ,Cr also satisfies C .

A semantic resolution refutation of F over A is a sequence Π of clauses,
ending with the empty clause, in which every clause either belongs to F
or is a semantic consequence over A of at most two earlier clauses.

Definition
Let ∆ be a probability distribution on {0, 1}n. An (ε,∆)-semantic
refutation of F is a pair (A,Π) such that

1. Π is a semantic refutation of F over A, and

2. Prα∼∆[α ∈ A] ≥ 1− ε.

Note: no auxiliary formulas!
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Proposition

1. If F has an (ε,∆)-RR refutation of width w and size s, then it also
has an (ε,∆)-semantic resolution refutation of width ≤ w and
size ≤ s.

2. If F has has an (ε,∆)-semantic refutation of width w and size s,
then it also has an (ε,∆)-RR refutation of width O(w) and size at
most O(sw 2).

[11]



The strength of RR

I A random 3-CNF with n variables and 64n clauses has a 1/2-RR
distribution of constant width and constant size with probability
exponentially close to 1.

I The retraction weak pigeonhole principle that asserts that there is
no pair of functions f : [2n]→ [n] and g : [n]→ [2n] such that
g(f (x)) = x for all x < n has a narrow 1/2-RR distribution.

I If P 6= NP, then 1/2-RR cannot be polynomially simulated by any
Cook-Reckhow refutation system. In particular, 1/2-RR is not itself
a Cook-Reckhow refutation system if P 6= NP.
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Lemma
Let F := C1 ∧ · · · ∧ Cm be a k-CNF formula such that for every
assignment α the number of clauses that are satisfied by α is ≤ δm for
some constant 0 < δ < 1. Then F has a δ-RR distribution of size 2k
which can be constructed in polynomial time.

Proof.
The distribution is defined by:

1. pick i ∈ [m] randomly

2. let Bi (the auxiliary formula) be ¬Ci and Πi the proof of ⊥ from Bi

and Ci .

For random 3-CNFs, δ = 7/8. To get ε ≤ 1/2, take random sixtuples
i1, . . . , i6 ∈ [m] and the CNFs equivalent to

¬Ci1 ∨ · · · ∨ ¬Ci6

[13]
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The weakness of RR

Theorem
PHPn has no 1/2-RR distribution of size O(2n1/12

).

Theorem
The formula CPLS2

n (will be defined later) does not have a 1/2-RR

distribution of size O(2n1/17

).

CPLS2
n has polynomial size Res(2) proofs.
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Bounded depth Frege refutation systems

1. clauses,
∨

-formulas – Resolution = 1-Frege system

2. DNFs –
∨∧

-formulas – 2-Frege system

3. etc.

Problem
Does there exist a CNF contradiction refutable in some d-Frege system,
d > 2, by quasipolynomial size refutation that does not have such a
2-Frege refutation.2

WPHP separates Resolution from 2-Frege.

Our result:

CPLS2 separates RR from 2-Frege.

2Open even for 1.5-Frege (=Res(log)).
[15]
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Definition
The formula CPLSa,b,c consists of the following three sets of clauses:

1. For each y < c , the clause ¬G0(0, y)

2. For each i < a− 1, each pair x , x ′ < b and each y < c , the clause

fi (x) = x ′ ∧ Gi+1(x ′, y)→ Gi (x , y)

3. For each x < b and each y < c , the clause

u(x) = y → Ga−1(x , y).

The formula CPLS2 is a variant of CPLS where for each i , x , y , instead
of the single variable Gi (x , y) it has two variables G 0

i (x , y) and G 1
i (x , y).

To express that colour y is present at node (i , x) we now use the
conjunction G 0

i (x , y) ∧ G 1
i (x , y).

[16]
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Lower bound for the pigeonhole principle in RR

PHPn has variables pij for i ∈ U and j ∈ V and consists of clauses

1.
∨

j∈V pij for all i ∈ U

2. ¬pij ∨ ¬pi ′j for all i , i ′ ∈ U with i 6= i ′ and all j ∈ V .
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1. width reduction

For a clause C , we define wec(C ), the edge covering width or ec-width of
C , to be the smallest size of a set W ⊆ U ∪ V that intersects all pairs
{i , j} mentioned in C . Formally,

wec(C ) := min{|W | | ∀i ∈ U, j ∈ V , (pij ∈ C∨¬pij ∈ C )→ (i ∈W∨j ∈W )}.

If Φ is a CNF formula, then wec(Φ) is the maximum of the ec-widths of
its clauses.

We will denote by Rm the set of partial matchings of size n −m
equipped with the uniform distribution.

Lemma
There exist constants c > 0 and 0 < d < 1 such that for every clause C
and every 1 ≤ ` ≤ n1/2,

Pr[wec(Cρ) > `] ≤ d`,

where the probability is over ρ ∼ Rbcn1/4c.

[18]
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2. the fixing lemma

Ideally, we would like to eliminate the auxiliary formula B by finding
ρ ∈ Rm such that Bρ ≡ 1. This is not always possible.

Lemma
Let B be a CNF formula such that wec(B) ≤ ` and

Prρ∼Rm [Bρ = 0] ≤ 1/2

where ` < m < n. Suppose that

`m(m − 1)

n −m + 1
<

1

2
.

Then there exists a ρ ∈ Rm such that there is no extension σ ⊇ ρ to a
partial matching such that Bσ = 0.

[19]
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Random Bounded Depth Frege proofs

Definition
Let d ≥ 3 be constant. A random d-Frege proof of a DNF tautology F is
a depth d Frege proof of

B → F ,

where B is a depth 3 formula
∨

i Bi , where Bi s are CNFs, such that for
every assignment α at least 1/2 of Bi s are satisfied.

Theorem
For every d, there is εd > 0 such that every random d-Frege proof of
PHPn has size ≥ 2nεd .

[20]
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Corollary
With high probability for a random 3-DNF Φ with n variables and 64n
clauses, there is no bounded depth Frege proof of Φ→ PHP of
subexponential size.
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Problems

I find natural random version for more proof systems

I cutting planes, ResLin, and, in particular, for the Nullstellensatz
system

I randomized SAT algorithms and random resolution
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