Random Resolution Refutations

Pavel Pudlák and Neil Thapen¹

Mathematical Institute, Academy of Sciences, Prague

Riga, 6.7.17

 $^{^{1}}$ the authors are supported by the ERC grant $\it FEALORA$

History and Motivation

Stefan Dantchev [unpublished]

Buss, Kołodziejczyk, Thapen [2014]

History and Motivation

Stefan Dantchev [unpublished]

Buss, Kołodziejczyk, Thapen [2014]

- Separations of fragments of Bounded Arithmetic
- ► The first randomized version of a proof system
- Developing lower bound methods
- Understanding what can be proved from random tautologies

Question. Random 3-DNFs (of sufficient density)

- 1. are tautologies,
- 2. can be easily generated, and
- 3. seem to be hard for every proof system (for not too high density).

But can we derive from them any useful tautology?

Question. Random 3-DNFs (of sufficient density)

- 1. are tautologies,
- 2. can be easily generated, and
- 3. seem to be hard for every proof system (for not too high density).

But can we derive from them any *useful* tautology?

Corollary (of our results)

With high probability for a random 3-DNF Φ (of sufficient density), there is no bounded depth Frege proof of $\Phi \to PHP$ of subexponential size.

Overview

- 1. equivalent definitions
- 2. upper bounds
- 3. lower bounds
- 4. generalization to bounded depth Frege proofs
- 5. problems

Definition

An ϵ -random resolution distribution, or ϵ -RR distribution, of F is a probability distribution Δ on pairs $(B_i, \Pi_i)_{i \sim \Delta}$ such that

- 1. for each $i \in \Delta$, B_i is a CNF in variables x_1, \ldots, x_n and Π_i is a resolution refutation of $F \wedge B_i$
- 2. for every $\alpha \in \{0,1\}^n$, $\Pr_{i \sim \Delta}[B_i \text{ is satisfied by } \alpha] \geq 1 \epsilon$.

The size and the width of Δ are defined respectively as the maximum size and maximum width of the refutations Π_i (if these maxima exist).

- ▶ RR is sound as a refutational system, in the sense that if F has an ϵ -RR distribution then F is unsatisfiable.
 - *Proof:* consider any assignment $\alpha \in \{0,1\}^n$. Since $\epsilon < 1$, there is at least one pair (B_i,Π_i) such that α satisfies B_i and Π_i is a resolution refutation of $F \wedge B_i$. So α cannot also satisfy F, by the soundness of resolution.
- RR is complete, since resolution is complete.
- RR is not a propositional proof system in the sense of Cook and Reckhow because it is defined by a semantic condition.
- ▶ The error ϵ can be reduced with only moderate increase of the proofs, so we can w.l.o.g. assume $\epsilon = 1/2$.

Let Δ be a probability distribution on $\{0,1\}^n$. An (ϵ,Δ) -random resolution refutation, or (ϵ,Δ) -RR refutation, of F is a pair (B,Π) such that

- 1. B is a CNF in variables x_1, \ldots, x_n and Π is a resolution refutation of $F \wedge B$
- 2. $\Pr_{\alpha \sim \Delta}[B[\alpha] = 1] \ge 1 \epsilon$.

Let Δ be a probability distribution on $\{0,1\}^n$. An (ϵ,Δ) -random resolution refutation, or (ϵ,Δ) -RR refutation, of F is a pair (B,Π) such that

- 1. B is a CNF in variables x_1, \ldots, x_n and Π is a resolution refutation of $F \wedge B$
- 2. $\Pr_{\alpha \sim \Delta}[B[\alpha] = 1] \ge 1 \epsilon$.

If an (ϵ, Δ) -RR refutation exists for *all* distributions Δ , then this is equivalent to the existence of an ϵ -RR distribution.

Let \mathcal{P} be a class of resolution refutations, e.g., refutations of width w and size s for some w and s.

Proposition

The following are equivalent.

- 1. F has an ϵ -RR distribution of refutations from \mathcal{P} .
- 2. F has an (ϵ, Δ) -RR refutation from $\mathcal P$ for every distribution Δ on $\{0,1\}^n$.

Proof.

Consider a zero-sum game between two players, Prover and Adversary:

- ▶ Prover picks a pair (B,Π) such that $\Pi \in \mathcal{P}$, B is a CNF, and Π is a refutation of $F \wedge B$,
- Adversary picks an assignment α .

The payoff is $B[\alpha]$, i.e., Prover gets 1 if α satisfies B and 0 otherwise.

Then

- ▶ definition 1 says: Prover has a mixed strategy to achieve a payoff of at least $1-\epsilon$, and
- ▶ definition 2 says: Adversary does not have a mixed strategy to achieve a payoff less than 1ϵ .

By the minimax theorem these statements are equivalent.

Let $A \subseteq \{0,1\}^n$ be a nonempty set of truth assignments. We say that a formula C is a *semantic consequence over* A of formulas C_1, \ldots, C_r , if every assignment in A that satisfies C_1, \ldots, C_r also satisfies C.

A semantic resolution refutation of F over A is a sequence Π of clauses, ending with the empty clause, in which every clause either belongs to F or is a semantic consequence over A of at most two earlier clauses.

Let $A \subseteq \{0,1\}^n$ be a nonempty set of truth assignments. We say that a formula C is a semantic consequence over A of formulas C_1, \ldots, C_r , if every assignment in A that satisfies C_1, \ldots, C_r also satisfies C.

A semantic resolution refutation of F over A is a sequence Π of clauses, ending with the empty clause, in which every clause either belongs to F or is a semantic consequence over A of at most two earlier clauses.

Definition

Let Δ be a probability distribution on $\{0,1\}^n$. An (ϵ,Δ) -semantic refutation of F is a pair (A,Π) such that

- 1. Π is a semantic refutation of F over A, and
- 2. $\Pr_{\alpha \sim \Delta}[\alpha \in A] \geq 1 \epsilon$.

Let $A \subseteq \{0,1\}^n$ be a nonempty set of truth assignments. We say that a formula C is a *semantic consequence over* A of formulas C_1, \ldots, C_r , if every assignment in A that satisfies C_1, \ldots, C_r also satisfies C.

A semantic resolution refutation of F over A is a sequence Π of clauses, ending with the empty clause, in which every clause either belongs to F or is a semantic consequence over A of at most two earlier clauses.

Definition

Let Δ be a probability distribution on $\{0,1\}^n$. An (ϵ,Δ) -semantic refutation of F is a pair (A,Π) such that

- 1. Π is a semantic refutation of F over A, and
- 2. $\Pr_{\alpha \sim \Delta}[\alpha \in A] \geq 1 \epsilon$.

Note: no auxiliary formulas!

Proposition

- 1. If F has an (ϵ, Δ) -RR refutation of width w and size s, then it also has an (ϵ, Δ) -semantic resolution refutation of width $\leq w$ and size $\leq s$.
- 2. If F has has an (ϵ, Δ) -semantic refutation of width w and size s, then it also has an (ϵ, Δ) -RR refutation of width O(w) and size at most $O(sw^2)$.

The strength of RR

▶ A random 3-CNF with *n* variables and 64*n* clauses has a 1/2-RR distribution of constant width and constant size with probability exponentially close to 1.

The strength of RR

- ▶ A random 3-CNF with *n* variables and 64*n* clauses has a 1/2-RR distribution of constant width and constant size with probability exponentially close to 1.
- ▶ The retraction weak pigeonhole principle that asserts that there is no pair of functions $f:[2n] \to [n]$ and $g:[n] \to [2n]$ such that g(f(x)) = x for all x < n has a narrow 1/2-RR distribution.

The strength of RR

- ▶ A random 3-CNF with *n* variables and 64*n* clauses has a 1/2-RR distribution of constant width and constant size with probability exponentially close to 1.
- ▶ The retraction weak pigeonhole principle that asserts that there is no pair of functions $f:[2n] \to [n]$ and $g:[n] \to [2n]$ such that g(f(x)) = x for all x < n has a narrow 1/2-RR distribution.
- If P ≠ NP, then 1/2-RR cannot be polynomially simulated by any Cook-Reckhow refutation system. In particular, 1/2-RR is not itself a Cook-Reckhow refutation system if P ≠ NP.

Lemma

Let $F:=C_1\wedge\cdots\wedge C_m$ be a k-CNF formula such that for every assignment α the number of clauses that are satisfied by α is $\leq \delta m$ for some constant $0<\delta<1$. Then F has a δ -RR distribution of size 2k which can be constructed in polynomial time.

Proof.

The distribution is defined by:

- 1. pick $i \in [m]$ randomly
- 2. let B_i (the auxiliary formula) be $\neg C_i$ and Π_i the proof of \bot from B_i and C_i .

Lemma

Let $F:=C_1\wedge\cdots\wedge C_m$ be a k-CNF formula such that for every assignment α the number of clauses that are satisfied by α is $\leq \delta m$ for some constant $0<\delta<1$. Then F has a δ -RR distribution of size 2k which can be constructed in polynomial time.

Proof.

The distribution is defined by:

- 1. pick $i \in [m]$ randomly
- 2. let B_i (the auxiliary formula) be $\neg C_i$ and Π_i the proof of \bot from B_i and C_i .

For random 3-CNFs, $\delta=7/8$. To get $\epsilon \leq 1/2$, take random sixtuples $i_1,\ldots,i_6 \in [m]$ and the CNFs equivalent to

$$\neg C_{i_1} \lor \cdots \lor \neg C_{i_6}$$

The weakness of RR

Theorem

PHP_n has no 1/2-RR distribution of size $O(2^{n^{1/12}})$.

Theorem

The formula $CPLS_n^2$ (will be defined later) does not have a 1/2-RR distribution of size $O(2^{n^{1/17}})$.

 $CPLS_n^2$ has polynomial size Res(2) proofs.

Bounded depth Frege refutation systems

- 1. clauses, \bigvee -formulas Resolution = 1-Frege system
- 2. DNFs $\bigvee \bigwedge$ -formulas 2-Frege system
- 3. etc.

Problem

Does there exist a CNF contradiction refutable in some d-Frege system, d > 2, by quasipolynomial size refutation that does not have such a 2-Frege refutation.²

²Open even for 1.5-Frege (=Res(log)).

Bounded depth Frege refutation systems

- 1. clauses, \bigvee -formulas Resolution = 1-Frege system
- 2. DNFs $\bigvee \bigwedge$ -formulas 2-Frege system
- 3. etc.

Problem

Does there exist a CNF contradiction refutable in some d-Frege system, d > 2, by quasipolynomial size refutation that does not have such a 2-Frege refutation.²

WPHP separates Resolution from 2-Frege.

²Open even for 1.5-Frege (=Res(log)).

Bounded depth Frege refutation systems

- 1. clauses, \bigvee -formulas Resolution = 1-Frege system
- 3. etc.

Problem

Does there exist a CNF contradiction refutable in some d-Frege system, d > 2, by quasipolynomial size refutation that does not have such a 2-Frege refutation.²

WPHP separates Resolution from 2-Frege.

Our result:

CPLS² separates RR from 2-Frege.

²Open even for 1.5-Frege (=Res(log)).

The formula $CPLS_{a,b,c}$ consists of the following three sets of clauses:

- 1. For each y < c, the clause $\neg G_0(0, y)$
- 2. For each i < a 1, each pair x, x' < b and each y < c, the clause

$$f_i(x) = x' \wedge G_{i+1}(x',y) \rightarrow G_i(x,y)$$

3. For each x < b and each y < c, the clause

$$u(x) = y \rightarrow G_{a-1}(x, y).$$

The formula $CPLS_{a,b,c}$ consists of the following three sets of clauses:

- 1. For each y < c, the clause $\neg G_0(0, y)$
- 2. For each i < a 1, each pair x, x' < b and each y < c, the clause

$$f_i(x) = x' \wedge G_{i+1}(x',y) \rightarrow G_i(x,y)$$

3. For each x < b and each y < c, the clause

$$u(x) = y \rightarrow G_{a-1}(x, y).$$

The formula $CPLS^2$ is a variant of CPLS where for each i, x, y, instead of the single variable $G_i(x, y)$ it has two variables $G_i^0(x, y)$ and $G_i^1(x, y)$. To express that colour y is present at node (i, x) we now use the conjunction $G_i^0(x, y) \wedge G_i^1(x, y)$.

Lower bound for the pigeonhole principle in RR

PHP_n has variables p_{ij} for $i \in U$ and $j \in V$ and consists of clauses

- 1. $\bigvee_{i \in V} p_{ij}$ for all $i \in U$
- 2. $\neg p_{ij} \lor \neg p_{i'j}$ for all $i, i' \in U$ with $i \neq i'$ and all $j \in V$.

1. width reduction

For a clause C, we define $w_{\rm ec}(C)$, the edge covering width or ec-width of C, to be the smallest size of a set $W \subseteq U \cup V$ that intersects all pairs $\{i,j\}$ mentioned in C. Formally,

$$w_{\mathrm{ec}}(C) := \min\{|W| \mid \forall i \in U, j \in V, (p_{ij} \in C \vee \neg p_{ij} \in C) \rightarrow (i \in W \vee j \in W)\}.$$

If Φ is a CNF formula, then $w_{\rm ec}(\Phi)$ is the maximum of the ec-widths of its clauses.

We will denote by \mathcal{R}_m the set of partial matchings of size n-m equipped with the uniform distribution.

1. width reduction

For a clause C, we define $w_{\rm ec}(C)$, the edge covering width or ec-width of C, to be the smallest size of a set $W \subseteq U \cup V$ that intersects all pairs $\{i,j\}$ mentioned in C. Formally,

$$w_{\mathrm{ec}}(\mathit{C}) := \min\{|\mathit{W}| \mid \forall i \in \mathit{U}, j \in \mathit{V}, \, (\mathit{p}_{ij} \in \mathit{C} \vee \neg \mathit{p}_{ij} \in \mathit{C}) \rightarrow (i \in \mathit{W} \vee j \in \mathit{W})\}.$$

If Φ is a CNF formula, then $w_{\rm ec}(\Phi)$ is the maximum of the ec-widths of its clauses.

We will denote by \mathcal{R}_m the set of partial matchings of size n-m equipped with the uniform distribution.

Lemma

There exist constants c > 0 and 0 < d < 1 such that for every clause C and every $1 \le \ell \le n^{1/2}$,

$$\Pr[w_{\rm ec}(C^{\rho}) > \ell] \le d^{\ell},$$

where the probability is over $\rho \sim \mathcal{R}_{|cn^{1/4}|}$.

2. the fixing lemma

Ideally, we would like to eliminate the auxiliary formula B by finding $\rho \in \mathcal{R}_m$ such that $B^\rho \equiv 1$. This is not always possible.

2. the fixing lemma

Ideally, we would like to eliminate the auxiliary formula B by finding $\rho \in \mathcal{R}_m$ such that $B^\rho \equiv 1$. This is not always possible.

Lemma

Let B be a CNF formula such that $w_{\rm ec}(B) \le \ell$ and

$$\Pr_{\rho \sim \mathcal{R}_m}[B^{\rho} = 0] \le 1/2$$

where $\ell < m < n$. Suppose that

$$\frac{\ell m(m-1)}{n-m+1}<\frac{1}{2}.$$

Then there exists a $\rho \in \mathcal{R}_m$ such that there is no extension $\sigma \supseteq \rho$ to a partial matching such that $B^{\sigma} = 0$.

Random Bounded Depth Frege proofs

Definition

Let $d \ge 3$ be constant. A random d-Frege proof of a DNF tautology F is a depth d Frege proof of

$$B \rightarrow F$$
,

where B is a depth 3 formula $\bigvee_i B_i$, where B_i s are CNFs, such that for every assignment α at least 1/2 of B_i s are satisfied.

Random Bounded Depth Frege proofs

Definition

Let $d \ge 3$ be constant. A random d-Frege proof of a DNF tautology F is a depth d Frege proof of

$$B \rightarrow F$$
,

where B is a depth 3 formula $\bigvee_i B_i$, where B_i s are CNFs, such that for every assignment α at least 1/2 of B_i s are satisfied.

Theorem

For every d, there is $\epsilon_d > 0$ such that every random d-Frege proof of PHP_n has size $\geq 2^{n^{\epsilon_d}}$.

Corollary

With high probability for a random 3-DNF Φ with n variables and 64n clauses, there is no bounded depth Frege proof of $\Phi \to PHP$ of subexponential size.

Problems

- find natural random version for more proof systems
- cutting planes, ResLin, and, in particular, for the Nullstellensatz system
- randomized SAT algorithms and random resolution

THANK YOU