From Weak to Strong LP Gaps for all CSPs

Mrinalkanti Ghosh
joint work with: Madhur Tulsiani
MAX \(k \)-CSP

- \(n \) variables
- \(m \) constraints
MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.
MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

$x_1 \lor x_{22} \lor \overline{x}_{19}$

$x_3 \lor \overline{x}_9 \lor x_{23}$

$x_5 \lor \overline{x}_7 \lor \overline{x}_9$

:\
MAX k-CSP

- \(n \) variables taking boolean values.
- \(m \) constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

\[
\begin{align*}
 x_1 & \lor x_22 \lor \overline{x}_{19} \\
 x_3 & \lor \overline{x}_9 \lor x_{23} \\
 x_5 & \lor \overline{x}_7 \lor \overline{x}_9 \\
 \vdots & \vdots
\end{align*}
\]

Max-Cut

\[
\begin{align*}
 x_1 & \neq x_2 \\
 x_2 & \neq x_5 \\
 x_3 & \neq x_4 \\
 \vdots & \vdots
\end{align*}
\]
MAX k-CSP

- n variables taking boolean values.
- m constraints: each is a k-ary boolean predicate.
- Satisfy as many as possible.

Max-3-SAT

\[
x_1 \lor x_{22} \lor \overline{x}_{19} \\
x_3 \lor \overline{x}_9 \lor x_{23} \\
x_5 \lor \overline{x}_7 \lor \overline{x}_9 \\
\vdots
\]

Max-Cut

\[
x_1 \neq x_2 \\
x_2 \neq x_5 \\
x_3 \neq x_4 \\
\vdots
\]

Approximation Problem: Approximate the fraction of constraints simultaneously satisfiable.
MAX k-CSP

- n variables taking values in some finite domains.
- m constraints: each is a non-negative k-ary function.
- Satisfy as many as possible.

Max-3-SAT

\[\begin{align*}
x_1 \lor x_{22} \lor \overline{x}_{19} \\
x_3 \lor \overline{x}_9 \lor x_{23} \\
x_5 \lor \overline{x}_7 \lor \overline{x}_9 \\
\vdots
\end{align*} \]

Max-Cut

\[\begin{align*}
x_1 \neq x_2 \\
x_2 \neq x_5 \\
x_3 \neq x_4 \\
\vdots
\end{align*} \]

Approximation Problem: Approximate the fraction of constraints simultaneously satisfiable.
CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let $S_{C_i} := (x_{i_1}, \cdots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x(S_{C_i}, \alpha),$$

with $x(S_{C_i}, \alpha) =$ indicator of assignment of α to S_{C_i}.

CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let $S_{Ci} := (x_{i_1}, \cdots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{Ci}}} f(\alpha + b_{Ci}) \cdot x(S_{Ci},\alpha),$$

with $x(S_{Ci},\alpha) =$ indicator of assignment of α to S_{Ci}.

$$\sum_{\alpha \in \{0,1\}^{S_{Ci}}} x(S_{Ci},\alpha) = x(i,b) \quad \forall C \in \Phi, i \in S_{C}, \quad b \in \{0,1\}$$

$$\sum_{b \in \{0,1\}} x(i,b) = 1 \quad \forall i \in [n]$$

$$x(S,\alpha) \geq 0$$
CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let $S_{C_i} := (x_{i_1}, \cdots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x(S_{C_i}, \alpha),$$

with $x(S_{C_i}, \alpha) =$ indicator of assignment of α to S_{C_i}.

maximize $\mathbb{E}_{C \in \Phi} \left[\sum_{\alpha \in \{0,1\}^{S_C}} f(\alpha + b_C) \cdot x(S_C, \alpha) \right]$}

$$\sum_{\alpha \in \{0,1\}^{S_C}} x(S_C, \alpha) = x(i,b) \quad \forall C \in \Phi, i \in S_C, b \in \{0,1\}$$

$$\sum_{b \in \{0,1\}} x(i,b) = 1 \quad \forall i \in [n]$$

$$x(S, \alpha) \geq 0$$
CSPs and Relaxations

MAX k-CSP (f): for i-th constraint, let $S_{C_i} := (x_{i_1}, \cdots, x_{i_k})$. Then:

$$C_i \equiv f(x_{i_1} + b_{i_1}, \cdots, x_{i_k} + b_{i_k}) \equiv \sum_{\alpha \in \{0,1\}^{S_{C_i}}} f(\alpha + b_{C_i}) \cdot x(s_{C_i}, \alpha),$$

with $x(s_{C_i}, \alpha) = \text{indicator of assignment of } \alpha \text{ to } S_{C_i}$.

maximize $\mathbb{E}_{C \in \Phi} \left[\sum_{\alpha \in \{0,1\}^{S_C}} f(\alpha + b) \cdot x(s, \alpha) \right]$

$$\sum_{\alpha \in \{0,1\}^{S_C}} x(s, \alpha) = x(i, b) \quad \forall C \in \Phi, i \in S_C, \quad b \in \{0,1\}$$

$$\sum_{b \in \{0,1\}} x(i, b) = 1 \quad \forall i \in [n]$$

$$x(s, \alpha) \geq 0$$

#constraints $= \Theta (m \cdot 2^k)$
- **Extended Formulation**: Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Feasible point in $\text{SA}(t)$: Family $\{D_S\} | |S| \leq t$ of consistent distribution with D_S a distribution on $\{0, 1\}^S$.

- Similarly, for Basic LP solution.
Extended Formulation and Sherali-Adams Relaxation

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Optimize objective $\langle w_\Phi, x \rangle$ (depending on Φ) over P.

Extended Formulation and Sherali-Adams Relaxation

- **Extended Formulation**: Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- Optimize objective $\langle w_\Phi, x \rangle$ (depending on Φ) over P.

- Introduce additional variables y. Optimize over polytope $P = \{x \mid \exists y \text{ } Ex + Fy = g, y \geq 0\}$. Size equals $\#\text{variables} + \#\text{constraints}$.
Extended Formulation and Sherali-Adams Relaxation

- **Extended Formulation**: Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- **Sherali-Adams**: A Sherali-Adams of level t is an Extended Formulation with
 \[\#\text{variables} = \binom{n}{t} \cdot 2^t. \]
Extended Formulation and Sherali-Adams Relaxation

- **Extended Formulation**: Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- **Sherali-Adams**: A Sherali-Adams of level t is an Extended Formulation with
 \#variables $= \binom{n}{t} \cdot 2^t$.

- Variables: $x(S, \alpha)$, $|S| \leq t$, $\alpha \in \{0, 1\}^S$.

Image from [Fiorini-Rothvoss-Tiwari-11]
Extended Formulation and Sherali-Adams Relaxation

EF:

- **Extended Formulation:** Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

SA:

- **Sherali-Adams:** A Sherali-Adams of level t is an Extended Formulation with
 \[\# \text{variables} = \binom{n}{t} \cdot 2^t. \]
- Feasible point in $SA(t)$: Family $\{D_S\}_{|S|\leq t}$ of consistent distribution with D_S a distribution on $\{0, 1\}^S$.
- **Extended Formulation**: Defined by a feasible polytope P, and a way of encoding instances Φ as a (linear) objective function w_Φ.

- **Sherali-Adams**: A Sherali-Adams of level t is an Extended Formulation with

 $\#\text{variables} = \binom{n}{t} \cdot 2^t$.

- Feasible point in $\text{SA}(t)$: Family $\{\mathcal{D}_S\}_{|S|\leq t}$ of consistent distribution with \mathcal{D}_S a distribution on $\{0, 1\}^S$.

- Similarly, for Basic LP solution.
Result

Basic LP

Sherali-Adams

LP Extended Formulation

[CLRS13 KMR17]
Main Theorem: For all CSPs, if Basic LP has integrality gap of \((c, s)\) then for all \(\varepsilon > 0\), there exist large enough instance(s) with integrality gap of \((c - \varepsilon, s + \varepsilon)\) for \(SA(\tilde{O}_\varepsilon(\log n))\).
Result

With [Kothari-Meka-Raghavendra-17]: For all CSPs, if Basic LP has \((c, s)\) gap, then so does any LP Extended Formulation of size \(n^{\tilde{O}(\log n)}\).

Ignoring \(\epsilon\) losses.
Hard Instance

- For each variable in Φ_0, create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint C from Φ_0.
 - For each variable x in S_C, choose $y_x \in B_x$, u.a.r.
 - Put the constraint C on the variables $\{y_x\}_{x \in S_C}$.

W.h.p., the instance hypergraph generated has $o(n)$ cycles of length at most $\eta \log n$ for $\eta > 0$.

Remove one constraint from every small cycle and get an instance of girth $\eta \log n$.
Use the hard instance Φ_0 of the basic relaxation as template to build the new hard instance on n variables and $m = \Delta \cdot n$ constraints.
Hard Instance

#variables = n and #constraints = m = Δ · n.
Hard Instance

#variables = n and #constraints = m = Δ · n.

- For each variable in \(\Phi_0 \), create bucket with large number of variables.
Hard Instance

\#variables = n and \#constraints = m = \Delta \cdot n.

- For each variable in \(\Phi_0 \), create bucket with large number of variables.
- Independently, sample each constraint as:

\text{Sample constraint } C \text{ from } \Phi_0.

For each variable \(x \) in \(S_C \), choose \(y_x \in B_x \), u.a.r.

Put the constraint \(C \) on the variables \(\{y_x\} \).

W.h.p., the instance hypergraph generated has \(o(n) \) cycles of length at most \(\eta \log n \) for \(\eta > 0 \).

Remove one constraint from every small cycle and get an instance of girth \(\eta \log n \).
#variables = n and #constraints = m = \Delta \cdot n.

- For each variable in \(\Phi_0 \), create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint \(C \) from \(\Phi_0 \).
Hard Instance

\#variables = n \quad \text{and} \quad \#constraints = m = \Delta \cdot n.

- For each variable in Φ_0, create bucket with large number of variables.

- Independently, sample each constraint as:
 - Sample constraint C from Φ_0.
 - For each variable x in S_C, choose $y_x \in B_x$, u.a.r.
Hard Instance

#variables = n and #constraints = m = \Delta \cdot n.

- For each variable in \(\Phi_0 \), create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint \(C \) from \(\Phi_0 \).
 - For each variable \(x \) in \(S_C \), choose \(y_x \in B_x \), u.a.r.
 - Put the constraint \(C \) on the variables \(\{y_x\}_{x \in S_C} \).
Hard Instance

#variables = n and #constraints = m = Δ \cdot n.

- For each variable in Φ_0, create bucket with large number of variables.
- Independently, sample each constraint as:
 - Sample constraint C from Φ_0.
 - For each variable x in S_C, choose $y_x \in B_x$, u.a.r.
 - Put the constraint C on the variables $\{y_x\}_{x \in S_C}$.

W.h.p., the instance hypergraph generated has $o(n)$ cycles of length at most $\eta \log n$ for $\eta > 0$.
Hard Instance

#variables = n and #constraints = m = \Delta \cdot n.

- For each variable in \(\Phi_0 \), create bucket with large number of variables.
- Independently, sample each constraint as:
 1. Sample constraint \(C \) from \(\Phi_0 \).
 2. For each variable \(x \) in \(S_C \), choose \(y_x \in B_x \), u.a.r.
 3. Put the constraint \(C \) on the variables \(\{y_x\}_{x \in S_C} \).

W.h.p., the instance hypergraph generated has \(o(n) \) cycles of length at most \(\eta \log n \) for \(\eta > 0 \). Remove one constraint from every small cycle and get an instance of girth \(\eta \log n \).
Overview - Completeness

Instance:

Consistent Distributions:

\[S \cap T \cap D_S \cap D_T \cap D_{S \cap T} \cap T \]
Overview - Completeness

Instance:

Consistent Distributions:

\(S \cap T \)

\(\mathcal{D}_S \)

\(\mathcal{D}_{S \cap T} \)

\(\mathcal{D}_T \)

Step 2: Construction of consistent distribution – Conditioning and propagating.
Overview - Completeness

Instance:

Consistent Distributions:

\[
S \cap T
\]

Step 1: Consistent Low-Diameter Decompositions.

Step 2: Construction of consistent distribution – Conditioning and propagating.
Step 1: Requirements

- A family of distributions, $\{C_S\}_{|S| \leq t}$
Step 1: Requirements

- A family of distributions, \(\{C_S\}_{|S| \leq t} \)
- \(C_S \): a distribution supported on partitions of \(S \) into low-diameter (not necessarily connected) components in the hypergraph.
Step 1: Requirements

- A family of distributions, \(\{C_S\}_{|S| \leq t} \)
- \(C_S \): a distribution supported on partitions of \(S \) into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = \(\text{girth}/100 \).
Step 1: Requirements

- A family of distributions, \(\{C_S\}_{|S| \leq t} \)
- \(C_S \): a distribution supported on partitions of \(S \) into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = girth/100.

- Minimize the quantity: the probability of a hyperedge being cut. Target = \(\varepsilon \).
Step 1: Requirements

- A family of distributions, $\{C_S\}_{|S| \leq t}$
- C_S: a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter $= \text{girth}/100$.
- Consistency:

Figure: $S \subset T$

- Minimize the quantity: the probability of a hyperedge being cut. Target $= \varepsilon$.
Step 1: Requirements

- A family of distributions, $\{C_S\}_{|S| \leq t}$
- C_S: a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter = girth/100.
- Consistency:

Figure: $S \subset T$

- Minimize the quantity: the probability of a hyperedge being cut. Target = ε.

Step 1: Requirements

- A family of distributions, $\{C_S\}_{|S| \leq t}$
- C_S: a distribution supported on partitions of S into \textit{low-diameter (not necessarily connected)} components in the hypergraph. Target diameter = $\text{girth}/100$.

- Consistency:

![Diagram showing a subset relation $S \subset T$]

Figure: $S \subset T$

- Minimize the quantity: the probability of a hyperedge being \textbf{cut}. Target = ε.
Step 1: Requirements

- A family of distributions, $\{C_S\}_{|S|\leq t}$
- C_S: a distribution supported on partitions of S into low-diameter (not necessarily connected) components in the hypergraph. Target diameter $= \text{girth}/100$.
- Consistency:

![Diagram showing sets S, T, D_S, $D_S \cap T$, and D_T.]

Figure: $S \subset T$

- Minimize the quantity: the probability of a hyperedge being cut. Target $= \varepsilon$.

Step 2: Conditioning and Propagation

Assume: \(c = 1 \)

Construction of \(\mathcal{D}_S \):

- Sample a partition \(\mathcal{P} \) of \(S \) from \(\mathcal{C}_S \).
Step 2: Conditioning and Propagation

Assume: \(c = 1 \)

Construction of \(\mathcal{D}_S \):
- Sample a partition \(\mathcal{P} \) of \(S \) from \(\mathcal{C}_S \).
- For each cell \(T \) of \(\mathcal{P} \), construct tree \(\mathcal{T}_S \) by connecting all shortest paths. Root the tree arbitrarily.
Step 2: Conditioning and Propagation

Assume: $c = 1$

Construction of \mathcal{D}_S:
- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.

Consistent Distribution.
Step 2: Conditioning and Propagation

Assume: \(c = 1 \)

Construction of \(D_S \):
- Sample a partition \(P \) of \(S \) from \(C_S \).
- For each cell \(T \) of \(P \), construct tree \(T_S \) by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \(T_S \) condition and propagate assignments in \(T_S \) using the local distribution from basic relaxation.
Step 2: Conditioning and Propagation

Assume: $c = 1$

Construction of \mathcal{D}_S:
- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
Step 2: Conditioning and Propagation

Assume: $c = 1$

Construction of \mathcal{D}_S:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.
Step 2: Conditioning and Propagation

Assume: $c = 1$

The cut constraints may not be satisfied.

Construction of \mathcal{D}_S:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

High girth + consistent low-diameter decomposition \implies Consistent Distribution.
Step 2: Conditioning and Propagation

Assume: $c = 1$

Construction of \mathcal{D}_S:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.

The cut constraints may not be satisfied. The distribution for any tree is independent of the choice of root.
Step 2: Conditioning and Propagation

Assume: $c = 1$

The cut constraints may not be satisfied. The distribution for any tree is independent of the choice of root.

High girth + consistent low-diameter decomposition \Rightarrow Consistent Distribution.

Construction of \mathcal{D}_S:

- Sample a partition \mathcal{P} of S from \mathcal{C}_S.
- For each cell T of \mathcal{P}, construct tree \mathcal{T}_S by connecting all shortest paths. Root the tree arbitrarily.
- Independently, for each \mathcal{T}_S condition and propagate assignments in \mathcal{T}_S using the local distribution from basic relaxation.
- For cell T, retain only the assignments to variables in T.
Construction of Step 1

Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.
Construction of Step 1

Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.
Construction of Step 1

Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.
Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any *small* set is *isometrically* embeddable on sphere.

Charikar et al. 1998: There exists a *rotation invariant, oblivious* decomposition of sphere into low diameter components.
Construction of Step 1

Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.
Construction of Step 1

Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.
Charikar-Makarychev-Makarychev-09: Can define a metric on the hypergraph (that grows with hypergraph distance) so that restriction on any small set is isometrically embeddable on sphere.

Charikar et al. 1998: There exists a rotation invariant, oblivious decomposition of sphere into low diameter components.

The probability of cutting a hyperedge dictates the size of the sets we can handle.
Conclusion

- We prove a dichotomy result for all CSPs for linear programming relaxations.
- We prove a dichotomy result for all CSPs for linear programming relaxations.

- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.
Conclusion

- We prove a dichotomy result for all CSPs for linear programming relaxations.

- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Conclusion

- We prove a dichotomy result for all CSPs for linear programming relaxations.

- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?

Q: What can be said for the case of SDP hierarchies?
Conclusion

- We prove a dichotomy result for all CSPs for linear programming relaxations.

- The result can also be interpreted as reducing the problem of showing hardness to a possibly easier task.

Q: Can the number of levels of SA be improved?
Q: What can be said for the case of SDP hierarchies?

Questions?
Other Dichotomy Results

- [Raghavendra-08]: Assuming Unique Games Conjecture, either a basic SDP achieves a \((c, s)\)-approximation for a CSP or it is NP-hard to do so.
Other Dichotomy Results

- **[Raghavendra-08]:** Assuming Unique Games Conjecture, either a basic SDP achieves a \((c, s)\)-approximation for a CSP or it is NP-hard to do so.

- **[Raghavendra-Steurer-09]:** (For Unique Games) If a basic SDP has gap of \((c, s)\) then so does \(\tilde{\log \log n}^{\frac{1}{4}}\)-levels of mixed relaxation.
Other Dichotomy Results

- **[Raghavendra-08]**: Assuming Unique Games Conjecture, either a basic SDP achieves a \((c, s)\)-approximation for a CSP or it is NP-hard to do so (for th

- **[Raghavendra-Steurer-09]**: (For Unique Games) If a basic SDP has gap of \((c, s)\) then so does \((\log \log n)^{\frac{1}{4}}\)-levels of mixed relaxation.

- **This result** If basic LP relaxation has a gap of \((c, s)\), then so does \(\tilde{O}(\log n)\)-level SA.