Noise Stability is Low-Dimensional

Anindya De, Elchanan Mossel, Joe Neeman
Gaussian noise stability

Take X and Y a pair of ρ-correlated Gaussians in \mathbb{R}^n ($0 < \rho < 1$).

For a partition $A = (A_1, \ldots, A_k)$ of \mathbb{R}^n into k parts, define

$$\text{Stab}_\rho(A) = \Pr(X \text{ and } Y \text{ land in the same part})$$
Gaussian noise stability

Noise stable

Not noise stable
Theorem (Borell ’85)
For a partition of \mathbb{R}^n into two parts of equal Gaussian measure,

$$\text{Stab}_\rho(A) \leq \frac{1}{2} + \frac{\sin^{-1} \rho}{\pi}.$$

Equality is attained for a partition into half-spaces.
Gaussian noise stability

Theorem (Borell ’85)

For a partition of \mathbb{R}^n into two parts of equal Gaussian measure,

$$\text{Stab}_\rho(A) \leq \frac{1}{2} + \frac{\sin^{-1}\rho}{\pi}.$$

Equality is attained for a partition into half-spaces.

- well-known links to computational complexity (KKMO ’05)
Gaussian noise stability

Theorem (Borell ’85)
For a partition of \mathbb{R}^n into two parts of equal Gaussian measure,

$$\text{Stab}_\rho(A) \leq \frac{1}{2} + \frac{\sin^{-1} \rho}{\pi}.$$

Equality is attained for a partition into half-spaces.

- well-known links to computational complexity (KKMO ’05)
- one-dimensional phenomenon
Gaussian noise stability

Theorem (???)

For a partition of \mathbb{R}^n into three parts of equal Gaussian measure,
Conjecture (Peace sign conjecture)

The optimal partition looks like a peace sign.
Conjecture (Peace sign conjecture)

The optimal partition looks like a peace sign.
(two-dimensional phenomenon)
Conjecture (Peace sign conjecture)
The optimal partition looks like a peace sign.
(two-dimensional phenomenon)

Conjecture (Multi-dimensional peace sign conjecture)
For partitions into k equal measures, the optimal partition occurs in \(\mathbb{R}^{k-1} \). It looks like a multi-dimensional peace sign.
Theorem (De-Mossel-N.)

For any k and any $\epsilon > 0$, there is a computable $n_0 = n_0(k, \epsilon)$ such that an ϵ-approximately optimal partition occurs in \mathbb{R}^{n_0}.
Theorem (De-Mossel-N.)
For any k and any $\epsilon > 0$, there is a computable $n_0 = n_0(k, \epsilon)$ such that an ϵ-approximately optimal partition occurs in \mathbb{R}^{n_0}.

Corollary
The optimal value of k-part noise stability is computable.
Gaussian noise stability

Theorem (De-Mossel-N.)

For any k and any $\epsilon > 0$, there is a computable $n_0 = n_0(k, \epsilon)$ such that an ϵ-approximately optimal partition occurs in \mathbb{R}^{n_0}.

Corollary

The optimal value of k-part noise stability is computable.

Corollary (sort of)

The non-interactive correlation distillation value with k-ary outputs is computable.
Correlation distillation

Goal: produce uniform output, agree with maximal probability.

What is the probability of agreement?
Correlation distillation

Goal: produce uniform output, agree with maximal probability.
What is the probability of agreement?

Ghazi-Kamath-Sudan ’16: reduction to correlated Gaussian signals
The main theorem

Theorem (De-Mossel-N.)

For any k and any $\epsilon > 0$, there is a computable $n_0 = n_0(k, \epsilon)$ such that an ϵ-approximately optimal partition occurs in \mathbb{R}^{n_0}.
Proof outline

Idea: take an optimal partition in \mathbb{R}^n (n huge) and try to “simulate” it in \mathbb{R}^{n_0}.
Proof outline

Idea: take an optimal partition in \mathbb{R}^n (n huge) and try to “simulate” it in \mathbb{R}^{n_0}.

1. An optimal partition is close to a bounded-degree polynomial threshold function (PTF)
Proof outline

Idea: take an optimal partition in \mathbb{R}^n (n huge) and try to "simulate" it in \mathbb{R}^{n_0}.

1. An optimal partition is close to a bounded-degree polynomial threshold function (PTF)

2. A bounded-degree PTF can be approximately simulated by a bounded-degree PTF on a bounded number of variables
Step 1: approximation by polynomials
Approximation by polynomials

Think of a partition as a function $f : \mathbb{R}^n \rightarrow \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$.
Think of a partition as a function $f : \mathbb{R}^n \rightarrow \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$.

Hermite expansion $f(x) = \sum_{\alpha, i} \hat{f}_{\alpha, i} H_{\alpha}(x)e_i$
Think of a partition as a function $f : \mathbb{R}^n \rightarrow \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$.

Hermite expansion $f(x) = \sum_{\alpha, i} \hat{f}_{\alpha, i} H_{\alpha}(x) e_i$

Facts: $1 = \sum_{\alpha, i} \hat{f}_{\alpha, i}^2$ and $\text{Stab}_\rho(f) = \sum_{\alpha, i} \rho^{\deg(H_{\alpha})} \hat{f}_{\alpha, i}^2$
Think of a partition as a function $f : \mathbb{R}^n \rightarrow \{e_1, \ldots, e_k\} \subset \mathbb{R}^k$.

Hermite expansion $f(x) = \sum_{\alpha,i} \hat{f}_{\alpha,i} H_{\alpha}(x) e_i$

Facts: $1 = \sum_{\alpha,i} \hat{f}_{\alpha,i}^2$ and $\text{Stab}_\rho(f) = \sum_{\alpha,i} \rho^{\deg(H_{\alpha})} \hat{f}_{\alpha,i}^2$

Idea: noise stability \Rightarrow lots of “low-degree” weight

\Rightarrow approximate f by truncating the expansion

Real proof goes through a smoothing/rounding procedure, and a connection with Gaussian surface area (KNOW '15).
Approximation by polynomials

Think of a partition as a function \(f : \mathbb{R}^n \rightarrow \{e_1, \ldots, e_k\} \subset \mathbb{R}^k \).

Hermite expansion

\[
f(x) = \sum_{\alpha, i} \hat{f}_{\alpha,i} H_{\alpha}(x)e_i
\]

Facts: \(1 = \sum_{\alpha, i} \hat{f}_{\alpha,i}^2 \) and \(\text{Stab}_\rho(f) = \sum_{\alpha, i} \rho^{\deg(H_{\alpha})} \hat{f}_{\alpha,i}^2 \)

Idea: noise stability \(\Rightarrow \) lots of “low-degree” weight

\(\Rightarrow \) approximate \(f \) by truncating the expansion

Real proof goes through a smoothing/rounding procedure, and a connection with Gaussian surface area (KNOW ’15).
Step 2: dimension reduction
Polynomial structure theorem (De-Servedio)

\[p_1(\overline{x}) \ p_2(\overline{x}) \ \ldots \ p_k(\overline{x}) \]

\[\underleftarrow{v} \ \underleftarrow{v} \ \underleftarrow{v} \]

\[q_1(\overline{v}) \ q_2(\overline{v}) \ \ldots \ q_k(\overline{v}) \]

\[v_1(\overline{x}) \ v_2(\overline{x}) \ v_3(\overline{x}) \ \ldots \ v_\ell(\overline{x}) \]

\[x_1 \ x_2 \ x_3 \ x_4 \ \ldots \ x_n \]

where \(\ell \) is bounded and \(v_1, \ldots, v_\ell \) are "nice"
Polynomial Central Limit Theorem (De-Servedio)

\[p_1(\overline{x}) \quad p_2(\overline{x}) \quad \ldots \quad p_k(\overline{x}) \]

\[q_1(\overline{u}) \quad q_2(\overline{u}) \quad \ldots \quad q_k(\overline{u}) \]

\[v_1(\overline{x}) \quad v_2(\overline{x}) \quad v_3(\overline{x}) \quad \ldots \quad v_\ell(\overline{x}) \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad \ldots \quad x_n \]
“Nice” polynomials satisfy a CLT, so they may as well be linear functions of \(\ell \) variables.
“Nice” polynomials satisfy a CLT, so they may as well be linear functions of ℓ variables
Conjecture (Peace sign conjecture)

The optimal partition looks like a peace sign.
Thank you!