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Subset Sum

Question (Subset Sum)

Given α1, . . . , αn, β ∈ C, prove there is no subset S ⊆ [n] with

the sum
∑
i∈S αi = β? Equivalently, prove there are no

solutions to

0 = x2
1 − x1 = · · · = x2

n − xn = α1x1 + · · ·+ αnxn − β .

Is coNP-hard, NP 6= coNP =⇒ any proof must be long

goal: prove unconditional lower bounds on lengths of proofs in

strong algebraic proof systems.
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Nullstellensatz Proofs (i)

Let f := (f1, . . . , fm) be a system of polynomials in C[x1, . . . , xn].

Theorem (Hilbert’s Nullstellensatz)

The system f1(x) = · · · = fm(x) = 0 has no solution iff there are

g1, . . . , gm ∈ C[x ] such that

g1(x) · f1(x) + · · ·+ gm(x) · fm(x) = 1 .

Gives a sound and complete proof system for unsatisfiability.

complexity: only weak bounds for g in general, ex: simple

unsatisfiable f can require deg g ≥ exp(m).

but: coNP-statements concern x ∈ {0, 1}n — polynomials over

{0, 1}n are degree ≤ n.
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Nullstellensatz Proofs (ii)

f := (f1, . . . , fm), x2 − x := (x2
1 − x1, . . . , x

2
n − xn).

Theorem (Boolean Nullstellensatz)

The system f = 0 has no solution over x ∈ {0, 1}n iff the

system f , x2 − x is unsatisfiable

iff there are g1, . . . , gm, h1, . . . , hn ∈ C[x ] such that∑
j

gj(x) · fj(x) +
∑
i

hi(x) · (x2
i − xi) = 1 .

complexity: deg g, h ≤ O(n), g, h have at most 2O(n) monomials

prior work ([BIK+96a, CEI96, BIK+96b, Raz98, Gri98, IPS99,

BGIP01, AR01,. . .]): exhibit simple f where

deg g, h ≥ Ω(n)

g, h require 2Ω(n) monomials
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Nullstellensatz Proofs (iii)

Theorem ([GrochowPitassi14])

Let CNF C = C1 ∧ · · · ∧ Cm be unsatisfiable and be encoded by

the equations f1, . . . , fm, x2 − x. Then there are g, h such that∑
j gj · fj +

∑
i hi · (x2

i − xi) = 1, where

If there is a size-s Frege proof that C is unsatisfiable, then

there are g, h with poly(n,m, s)-size algebraic formulas.

There are g, h in VNP ≈ {explicit polynomials}.

Algebraic formulas are a succinct model of computation for

polynomials, e.g. x2 − y 2 = (x + y )(x − y ) can be given by

×

+

x y

+

x y

−1
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The Ideal Proof System (IPS)

f := (f1, . . . , fm), x2 − x := (x2
1 − x1, . . . , x

2
n − xn).

Definition ([GrochowPitassi14])

A size-s (linear) Ideal Proof System (IPS) proof of

unsatisfiability of f , x2 − x using C-computations is g, h where∑
j gj(x) · fj(x) +

∑
i hi(x) · (x2

i − xi) = 1.

each gj , hi is size-s C-formula.

proof verification: via Polynomial Identity Testing, only

randomized algorithms known in general.

[GP14]: formula-IPS is as powerful as Frege.

[GP14]: lower bounds for C-proofs of CNFs =⇒ lower

bounds for C-computations of the permanent

[FTL15]: non-commutative formula-IPS is equivalent to

Frege.

goal: prove lower bounds for C-IPS for interesting C.
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Multilinear Formulas

Definition

A polynomial f ∈ C[x1, . . . , xn] is multilinear if the individual

degree of each variable xi is at most 1, that is

f (x) =
∑
S⊆[n]

αS
∏
i∈S

xi .

A formula is multilinear if each gate is multilinear.

A multilinear polynomial is uniquely determined by

evaluations over {0, 1}n.

[Raz04,RY09]: permanent and determinant require

nΩ(lg n)-size multilinear formulas, 2n
Ω(1)

-size constant-depth

multilinear formulas

[RT08]: defined proof system based on multilinear formulas,

short proofs for pigeonhole principle, etc.

goal: prove lower bounds for multilinear-formula-IPS.
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Our Results

x1 + · · ·+ xn + 1, x2 − x , is unsatisfiable subset-sum instance.

Theorem ([ImpagliazzoPudlákSgall99])

x1 + · · ·+ xn + 1, x2 − x requires Nullstellensatz refutations of

degree ≥ Ω(n).

2Ω(n)-monomials.

Related to Pigeonhole Principle, well-known “hard” principle.

Theorem (Upper Bounds for Subset-Sum)

x1 + · · ·+ xn + 1, x2 − x has a poly(n)-size C-IPS proof for C =

depth-3 multilinear formulas

read-once oblivious algebraic branching programs (roABPs)

Strengthens related upper bounds of [GH03,RT08].
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Our Results (ii)

Theorem (Lower Bounds for Subset-Sum Variants)∑
i<j zi ,jxixj + 1, x2 − x , z 2 − z requires

multilinear-formula-IPS proofs of nΩ(lg n)-size

constant-depth-multilinear-formula-IPS proofs of 2n
Ω(1)

-size

roABP-IPS proofs of 2Ω(n)-size (in every order)

First such lower bounds, matches much of the frontier of lower

bounds in algebraic complexity theory.

Proven via functional lower bounds.
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Functional Lower Bounds

circuit complexity: single polynomial requires large formulas.

proof complexity: every proof requires large formulas.

idea: if “unique” proof then only study single polynomial.

Consider an unsatisfiable system f (x), x2 − x , with proof

g(x) · f (x) +
∑
i

hi(x) · (x2
i − xi) = 1 .

g(x) · f (x) = 1, x ∈ {0, 1}n

g(x) = 1/f (x), x ∈ {0, 1}n

=⇒ g unique as a function or as multilinear polynomial.

goal: find easy f (x) so any g with g|{0,1}n = 1
f |{0,1}n is hard.

A type of functional lower bound [GR00,FKS15].
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Our Results (iii)

Theorem (Lower Bounds for Subset-Sum Variants)∑
i<j zi ,jxixj + 1, x2 − x , z 2 − z requires

multilinear-formula-IPS proofs of nΩ(lg n)-size

constant-depth-multilinear-formula-IPS proofs of 2n
Ω(1)

-size

roABP-IPS proofs of 2Ω(n)-size (in every order)

Proof.

prove functional lower bound for degree.

“lift” to functional lower bound for evaluation dimension.

conclude functional lower bound for circuit classes via known

relations to evaluation dimension.

conclude IPS lower bounds.
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Functional Lower Bound — Degree

x1 + · · ·+ xn + 1, x2 − x .

Proposition

f ∈ C[x ]. If

f (x) =
1

x1 + · · ·+ xn + 1
, x ∈ {0, 1}n ,

then deg f ≥ n.

Tight. Strengthens prior deg f ≥ n/2 [IPS99].

Proof.

multilinearize: f 7→ ml(f ) with f |{0,1}n = ml(f )|{0,1}n , and

deg f ≥ deg ml(f ).

ml(f ) uniquely determined, compute it explicitly,

deg ml(f ) = n.
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Evaluation Dimension

f ∈ C[x1, . . . , xn, y1, . . . , yn]. Study interaction between x and y .

Definition ([Nis91,Sap12,FS13b])

The set of evaluations of f is

Evalx |y (f ) := {f (x , β)}β∈{0,1}n ⊆ C[x ] .

The evaluation dimension of f is dimC Evalx |y (f ).

Well-studied complexity measure, used for many lower bounds:

multilinear formulas [Raz04,RY09,. . .]

non-commutative ABPs, roABPs [Nisan91,FS13b,. . .]

depth-3 powering formulas [Saxena08,FS13b,. . .]
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Functional Lower Bound — Evaluation Dimension∑n
i=1 xiyi + 1, x2 − x , y 2 − y .

Proposition

f (x , y ) = 1∑
i
xiyi+1

for x , y ∈ {0, 1}n, then dimEvalx |y (f ) ≥ 2n.

Proof.

Evalx |y (f ) = {f (x , β)}β∈{0,1}n .

For x ∈ {0, 1}n, f (x , β) = 1∑
i
xiβi+1

β↔S
= 1∑

i∈S xi+1

ml(f (x ,S)) has degree ≤ |S |, ≥ |S | =⇒
ml(f (x ,S)) =

∏
i∈S xi + (lower terms).

ml(f (x ,S)) triangular system =⇒ linearly independent.

dimEvalx |y (f ) ≥ dim ml(Evalx |y (f )) = dim{ml(f (x ,S))}S⊆[n]

= dim
{ ∏
i∈S

xi + (lower terms)
}
S

= 2n .
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Our Results (iv)

Theorem (Lower Bounds for Subset-Sum Variants)∑
i<j zi ,jxixj + 1, x2 − x , z 2 − z requires

multilinear-formula-IPS proofs of nΩ(lg n)-size

constant-depth-multilinear-formula-IPS proofs of 2n
Ω(1)

-size

roABP-IPS proofs of 2Ω(n)-size (in every order)

Proof.

degree ≥ n functional lower bound for 1∑
i
xi+1

dimEvalx |y ≥ 2n functional lower bound for 1∑
i
xiyi+1

symmetrize to get functional lower bound for 1∑
i<j
zi,jxixj+1

invoking existing relations to restricted circuit classes

convert functional lower bound to IPS lower bound
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Conclusions

This talk:

upper bounds for proving unsatisfiability of
∑
i xi + 1, x2 − x

depth-3 multilinear formulas

read-once oblivious algebraic branching programs (roABPs)

lower bounds for proving unsatisfiability of∑
i<j zi ,jxixj + 1, x2 − x , z 2 − z

multilinear-formula-IPS proofs of nΩ(lg n)-size

constant-depth-multilinear-formula-IPS proofs of 2n
Ω(1)

-size

roABP-IPS proofs of 2Ω(n)-size (in every order)

Other results:

“non-linear” IPS = “linear” IPS

lower bounds for multiples: if f requires large formulas, does

g · f for every non-zero g?

Open Questions:

Lower bounds for unsatisfiability of f1, . . . , fm, x2 − x with

m > 1?
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